The Post

Sonic tweezers, microbubbl­es may be used to target tumours

-

Scientists have developed a means of using sound waves to track and manoeuvre tiny parcels of drugs to precise locations inside the body.

The technique could be used to ferry powerfully toxic cancer treatments to tumour sites, avoiding damage to surroundin­g tissues and dramatical­ly reducing the amount of the drug the patient is exposed to, researcher­s said.

It might also be used in gene therapies, where genetic material must reach and infiltrate a small target group of cells. At present once a drug is injected doctors typically have little control. The accuracy of delivery can be judged by taking tissue samples from a patient. Alternativ­ely, radioactiv­e materials can be used to chart the progress of some medicines inside the body.

‘‘We propose a new way to image and move the drug precisely,’’ Xuejun Qian, of the University of Southern California in Los Angeles, who led the latest research, said.

His team used a new form of ‘‘ultrafast’’ ultrasound imaging. It was capable of accurately tracking the progress of a cluster of ‘‘microbubbl­es’’ – tiny gasfilled bubbles that previous studies have identified as a means of transporti­ng drugs through the vascular system – inside a mock blood vessel.

As the bubbles were being tracked the scientists were able to use a focused ultrasound transducer, a device that converts electrical energy into sound energy, to manoeuvre them. Known as ‘‘acoustic tweezers’’, this type of system uses the mechanical energy of sound waves to manipulate tiny objects without making physical contact.

The scientists were also able to turn up the acoustic power to burst the bubbles, which would allow the drugs contained within them to be released only at a target site. Similar techniques have been used before but without the microbubbl­es being tracked using ultrasound imaging.

The experiment­s used a slender silicone tube to represent a blood vessel and tissue from a pig was used to play the part of a human body. In an early round of testing the microbubbl­es could be manoeuvred when they were up to a centimetre deep inside the tissue. The work was described in a study published in the journal Applied Physics Letters.

Previous trials, which used a less sophistica­ted microbubbl­e system, had suggested that only about 1 per cent of an injected dose of chemothera­peutic drugs had reached the tumour. – The Times

Newspapers in English

Newspapers from New Zealand