The Press

Drug resistance spreads to humans at ‘shocking’ rate

-

BRITAIN: Resistance to the antibiotic of last resort spread from a single Chinese pig farm to human patients on five continents within the space of a decade, scientists have discovered.

The study is the first to identify the ‘‘shocking’’ speed with which a gene that gives bacteria such as E coli and salmonella protection against drugs can jump across borders and from species to species.

Anti-microbial resistance (AMR), where potentiall­y deadly pathogens evolve and exchange mutations that shield them against antibiotic­s, has led to the rise of several strains of ‘‘superbug’’ that are extremely hard to treat even in hospitals.

Dame Sally Davies, the UK’s chief medical officer, has warned that the phenomenon could lead to the ‘‘end of modern medicine’’ as routine infections become uncontroll­able.

The situation has become so dire that doctors have been compelled to bring an old antibiotic known as colistin out of retirement, even though it can cause acute kidney toxicity. The drug has been used sparingly as a last line of defence where all others have failed, particular­ly against lung infections such as pneumonia and Pseudomona­s aeruginosa.

Yet in 2015 Public Health England officials found signs of colistin resistance in three samples from pig farms and 12 more from human patients in the UK. The suspicion was that its evolution had been driven by agricultur­e since livestock farmers often use industrial quantities of human antibiotic­s to accelerate their animals’ growth and to defend against infection.

A team of scientists led by Francois Balloux, director of the Genetics Institute at University College London, analysed 451 samples of colistin-resistant bacteria from 31 countries to work out where the mutation had come from and how it had travelled around the world.

Their DNA detective work showed that the mcr-1 gene, which hardens bacteria against colistin, could be traced back to a single microbe that very probably emerged from the Chinese pig trade in about 2005. The mcr-1 gene then leapt across the boundaries between species in microscopi­c blobs called plasmids, which bacteria use to exchange fragments of DNA.

‘‘The speed at which mcr-1 spread globally is indeed shocking,’’ Balloux said. ‘‘[But] what actually worries me even more than the spread of AMR elements would be the spread of virulence elements, which allow infections to spread more readily, such as some we start seeing in the major nosocomial [hospital-derived] pathogen Klebsiella.

 ??  ?? Francois Balloux
Francois Balloux

Newspapers in English

Newspapers from New Zealand