The Press

Scientists hail the mother of all lizards

- Sarah Kaplan

The world in which we live is home to more kinds of scaly reptiles than all the mammal families combined. The reptile order Squamata – snakes, lizards and New Zealand species such as geckos and skinks – is the largest order of living land vertebrate­s on the planet.

And yet scientists know surprising­ly little about where all those geckos and vipers and iguanas and skinks came from. Genetic evidence suggests the order originated in the Permian period, more than 250 million years ago. But the oldest known squamate fossil was about

70 million years younger. ‘‘That’s more time than there is between us and the dinosaurs, and we had no clue what was going on,’’ said Tiago Simoes, a palaeontol­ogist at the University of Alberta.

Enter Megachirel­la wachtleri, a 6 centimetre, 240-million-yearold fossil – and an exciting new clue in this evolutiona­ry mystery. According to research by Simoes and his colleagues that was published in the journal Nature, megachirel­la is the ‘‘mother of all lizards’’, the oldest known ancestor of all squamates.

Her existence helps explain the transition from more primitive reptiles to the large, diverse order that now slithers, creeps and burrows across every continent except Antarctica.

In a video for the MUSE Science Museum in Trento, Italy, co-author Michael Caldwell called the fossil a ‘‘perfect example. It’s a virtual Rosetta stone,’’ said Caldwell, also a palaeontol­ogist at the University of Alberta, ‘‘in terms of the informatio­n it gives us on the evolution of snakes and lizards.’’

Megachirel­la’s partial skeleton was discovered by an amateur fossil hunter in the

Dolomite mountains of northern Italy and first described by scientists in 2003.

But researcher­s were not quite sure how the new species fitted into the reptile family tree.

Fifteen years later, highresolu­tion micro CT scanning made it possible to peer inside the rock holding the fossil and identify features concealed within.

At a synchrotro­n facility, Simoes and his colleagues identified features in the animal’s brain case, collar bone and wrists that are unique to lizards. They also found evidence of vestigial traits that more modern squamates have since lost – a small cheek bone and primitive belly bones called gastralia (which are found in many dinosaurs, too).

‘‘For the first time, having that informatio­n with this highly expanded data set, it became possible to assess the relationsh­ip of not only this species but also of other species of reptiles,’’ Simoes said.

When megachirel­la walked the Earth, in the middle Triassic period, the world’s land masses were crushed together in a superconti­nent called Pangaea. Flowers had not evolved, and the ground was dominated by primitive plants called lycopods (ancestors of club mosses and quillworts).

The conditions under which the fossil was found – in marine sediments but surrounded by fossilised land plants – suggest that a powerful storm hit the coastline where megachirel­la lived and swept the tiny critter out to sea.

Simoes and his colleagues are still seeking evidence of megachirel­la’s behaviour. And they still need to fill in the tens of millions of years between megachirel­la and the next oldest squamate fossil.

– The Washington Post

‘‘It’s a virtual Rosetta stone in terms of the informatio­n it gives us on the evolution of snakes and lizards.’’ Michael Caldwell

 ??  ?? Megachirel­la wachtleri is the oldest known ancestor of all squamates.
Megachirel­la wachtleri is the oldest known ancestor of all squamates.

Newspapers in English

Newspapers from New Zealand