Weekend Herald

Weird Science

- With Herald science writer Jamie Morton @jamienzher­ald

Hawking’s final theory on the universe

The universe is finite and far simpler than many theories about the “big bang” — that’s according to the late Professor Stephen Hawking’s final work on how it all began 13.8 billion years ago.

The cosmologis­t’s theory, which he worked on in collaborat­ion with Professor Thomas Hertog of Belgium’s KU Leuven, has been published two months after his death.

Modern theories of the big bang predict that our local universe came into existence with a brief burst of inflation — in other words, a tiny fraction of a second after the big bang itself, the universe expanded at an exponentia­l rate.

It is widely believed, however, that once inflation starts, there are regions where it never stops.

It is thought that quantum effects can keep inflation going forever in some regions of the universe, so that globally, inflation is eternal.

The observable part of our universe would then be just a hospitable pocket universe, a region in which inflation has ended and stars and galaxies formed.

“The usual theory of eternal inflation predicts that globally our universe is like an infinite fractal, with a mosaic of different pocket universes, separated by an inflating ocean,” Hawking explained in one of his last interviews.

“The local laws of physics and chemistry can differ from one pocket universe to another, which together would form a multiverse.

Hawking and Hertog say this account of eternal inflation as a theory of the big bang is wrong.

“The problem with the usual account of eternal inflation is that it assumes an existing background universe that evolves according to Einstein’s theory of general relativity and treats the quantum effects as small fluctuatio­ns around this,” Hertog said.

“However, the dynamics of eternal inflation wipes out the separation between classical and quantum physics.

“As a consequenc­e, Einstein’s theory breaks down in eternal inflation.”

The two scientists thus predicted that our universe, on the largest scales, was reasonably smooth and globally finite, and not a fractal structure.

Why seniors are easily distracted

Researcher­s have pin-pointed the region in the brain, recently revealed as the epicentre for Alzheimer’s disease, that may be to blame for distractio­n in the elderly.

A US study found seniors’ attention shortfall is associated with the locus coeruleus, a tiny region of the brain stem that connects to many other parts of the brain, and helps focus brain activity during periods of stress or excitement.

Increased distractib­ility is a sign of cognitive ageing — and the study found that older adults are even more susceptibl­e to distractio­n under stress, or emotional arousal, indicating that the ability to intensify focus weakens over time.

“Trying hard to complete a task increases emotional arousal, so when younger adults try hard, this should increase their ability to ignore distractin­g informatio­n,” said Professor Mara Mather, of the University of Southern California.

“But for older adults, trying hard may make both what they are trying to focus on and other informatio­n stand out more.

“The locus coeruleus appeared to be one of the earliest sites of tau pathology — the tangles that are a hallmark of Alzheimer’s disease.

“Initial signs of this pathology are evident in the locus coeruleus in most people by age 30,” Mather said. “Thus, it is critical to better understand how locus coeruleus function changes as we age.”

What makes ice slippery?

Scientists have explained what makes ice and snow so slippery — and it’s a little more complicate­d than you might think.

In 1886, Irish physicist John Joly offered the first scientific explanatio­n for low friction on ice; when an object — such as an ice skate — touches the ice surface, the local contact pressure is so high that the ice melts, thereby creating a liquid water layer that lubricates the sliding.

The current consensus is that although liquid water at the ice surface does reduce sliding friction on ice, this liquid water is not melted by pressure but by frictional heat produced during sliding.

A team of German and Dutch researcher­s have now demonstrat­ed that friction on ice is more complex than so far assumed.

Through macroscopi­c friction experiment­s at temperatur­es ranging from 0C to -100C, the researcher­s show that — surprising­ly — the ice surface transforms from an extremely slippery surface at typical winter sports temperatur­es, to a surface with high friction at -100C.

The researcher­s say two types of water molecules exist at the ice surface: water molecules that are stuck to the underlying ice, or bound by three hydrogen bonds, and mobile water molecules bound by only two hydrogen bonds.

These mobile water molecules continuous­ly rolled over the ice.

As the temperatur­e increased, the two species of surface molecules were interconve­rted: the number of mobile water molecules was increased at the expense of water molecules that are fixed to the ice surface.

Remarkably, this temperatur­e-driven change in the mobility of the topmost water molecules at the ice surface perfectly matched the temperatur­edependenc­e of the measured friction force, meaning the larger the mobility at the surface, the lower the friction, and vice versa.

The researcher­s therefore concluded that, rather than a thin layer of liquid water on the ice, the high mobility of the surface water molecules was responsibl­e for the slipperine­ss of ice.

 ??  ??
 ??  ??

Newspapers in English

Newspapers from New Zealand