Qatar Tribune

QU researcher­s contribute to developing method to remove pharma wastes from water

The study presented an efficient removal method for antidiabet­ic drug glimepirid­e from water

-

AN internatio­nal team led by researcher­s from Qatar University (QU) has recently published a research article in Environmen­tal Science and Pollution Research’, a reputable journal published by Springer Nature.

The work presented a rapid and efficient removal method for the antidiabet­ic drug glimepirid­e from water by multi-walled carbon nanotubes (MWCNT).

The research was motivated by the rising global concerns of water pollution caused by pharmaceut­ical and personal care products (PPCP). Such pollutants have been detected in surface water across the globe, particular­ly in heavily populated areas.

This research aims to develop a new method for removing residues of the Gilmeride, a common drug to treat type II diabetes, using carbon nanotubes in a continuous adsorption process.

The research came as a collaborat­ion between Dr Ismail Badran, assistant professor at the Department of Chemistry and Earth Sciences at the College of Arts and Sciences at Qatar University, Dr Murad Abu Al-Hassan, an associate professor in Pharmacy, AnNajah National University in Palestine, and Obada Qut, a graduate student in the Department of Chemistry at AnNajah University.

In addition, the research was done in collaborat­ion with Dr Abdullah Manasra, Department of Chemical Engineerin­g

at University of Calgary, Canada.

This research serves Qatar University’s objectives within its continuous vision to focus on scientific research and its quality, and to develop human and technical skills in Qatar.

Qatar University is an active and pivotal research body for Qatar’s developmen­t, which conducts high-level research to serve its partners in the community. The university’s role as an engine for research and innovation in Qatar focused on a record of research achievemen­ts and from the bodies that support this research, the College of Arts and Sciences at Qatar University, the Central Laboratory Unit (CLU) at Qatar University, and outside the university, An-Najah National University in Palestine participat­ed in supporting this research.

The study was performed by utilising multi-walled carbon nanotubes (MWCNT) to remove the antidogmat­ic drag, glimepirid­e, from aqueous media. The study revealed that the drug can be removed with almost 100 percent efficiency. For potential industrial implementa­tion, the study was done under continuous-flow mode rather than the convention­al batch method.

In the report, the researcher­s point out that water pollution by emerging pollutants such as pharmaceut­ical and personal care products is one of today’s biggest challenges. The presence of these emerging contaminan­ts in water has raised increasing concern due to their frequent appearance and persistenc­e in the aquatic ecosystem and threat to health and safety.

The research report explained that the antidiabet­ic drug glimepirid­e, GPD, is among these compounds, and it possesses adverse effects on human health if not carefully administer­ed. Several convention­al processes were proposed for the eliminatio­n of these persistent contaminan­ts and adsorption is among them.

Therefore, in this study, the adsorptive removal of GPD from water using multi-walled carbon nanotubes (MWCNT) supported on silica was explored on a fixed-bed column. The effects of bed-height, solution pH and flow rate on the adsorptive removal of GPD were investigat­ed.

The obtained adsorption parameters using Sips, Langmuir and Freundlich models were used to investigat­e the continuous adsorption.

The results showed that the drug removal is improved with the increasing bed height; however, it decreased with the flow rate. The effect of pH indicated that the adsorption is significan­tly affected and increased in acidic medium.

The convection-dispersion model coupled with Freundlich isotherm was developed and used to describe the adsorption breakthrou­gh curves. The maximum adsorption capacity (qm) was 275.3 mg g, and the axial dispersion coefficien­ts were ranged between 3.5 and 9.0

105 m2 s. The spent adsorbent was successful­ly regenerate­d at high pH by flushing with NaOH.

 ??  ?? Dr Ismail Badran
Dr Ismail Badran

Newspapers in English

Newspapers from Qatar