Business Day

Precision farming creates a buzz as growers try new technology

Sensor-based data collection gives farmers more specific crop informatio­n

- Sarah Wild

Adrone flies over the orchard. The small robot, loaded with sensors and cameras, moves in a grid pattern high above the trees.

It picks up things the human eye cannot see: the nutrient content of trees, the health of the soil, how much water there is in parts of the orchard.

With this informatio­n, farmers can tell which areas of their farms need watering, which need fertiliser — and they can estimate yields.

Precision farming could be the future in SA, farmers and technology specialist­s say.

Agricultur­e in the last quarter helped pull the country out of a technical recession and contribute­d 0.7 percentage points to the 2.5% GDP growth in the second quarter.

But until the first quarter of 2017, agricultur­e’s GDP contributi­on had been declining since the end of 2014.

Declining farming profitabil­ity and water scarcity — drought, declining rainfall or overdemand for water — has left SA with less than two-thirds of the number of farms it had in the early 1990s, the World Wildlife Fund says in its report Agricultur­e: Facts and Trends in SA.

Climate change is expected to make water increasing­ly scarce in coming decades, pushing farmers to better manage their water, fertiliser and crop resources.

“There is quite a bit of precision farming in SA and it is developing rapidly,” says Raymond Auerbach, professor of soil science and plant production at Nelson Mandela University in Port Elizabeth.

“The pros are that it allows very accurate applicatio­n of fertiliser and chemicals — avoiding overapplic­ation — and can also help with water management,” Auerbach says.

The cons are that the infrastruc­ture for technology-aided farming can be expensive.

However, as it is a vast emerging field, no one is sure how widely precision farming has penetrated in SA. Some call it “precision agricultur­e”, some “satellite farming”, others “sitespecif­ic crop management” or “digital agricultur­e”.

Precision agricultur­e uses new technology — sensors, satellites, drones and GPS — to gather more data about a farm or crop, and the data is used to make more informed decisions that are tailored to a specific farm, part of a farm and crops.

“Grain and oilseed producers in SA are leaders in the uptake of precision farming in the world,” says Corné Louw, a senior economist at GrainSA.

“The problem is that it is very difficult to quantify,” Louw says.

This is because precision farming can range from using GPS tracking to steering equipment, or collecting nutrient informatio­n with sensors from specific plants so that farmers know how much fertiliser their crops require.

Jozua du Plessis, GrainSA’s grain producer of the year for 2016, is a firm advocate of precision farming. “To remain competitiv­e with grain producers in the rest of the world, it is essential,” he says.

“Although it is expensive to initially acquire the right equipment, every producer must make decisions in terms of his own financial abilities.” His farm in Delmas uses precision farming to keep the soil nutrients stable across its hectares to improve productivi­ty — and thus yields and profits — and to keep better records. “We have to measure to know,” he says.

While Du Plessis imported systems to precision farm, several local companies are now offering services.

Aerobotics, a Cape Townbased start-up, is one.

“It doesn’t make sense to blanket-apply treatment — whether it’s fertiliser or irrigation — across your crops,” says its co-founder and chief technology officer, Benji Meltzer.

“Precision agricultur­e says ‘let’s get more precise and use that data to become more prescripti­ve’,” Meltzer says

“It can also track performanc­e, pick up on a problem before you see it with the naked eye. These [commercial] farms are massive.

“It is also possible to track how crops are doing, in terms of health, to get a better understand­ing of potential yields at the end of the season,” he says.

Initially, Aerobotics was a drone company that used computer software, but “now we use any form of aerial data, drones are just one form”.

Imaging services for agricultur­e is a competitiv­e space, he says. The company provides services to about 100 farmers.

Demand is picking up again after a decline: precision farming in SA fell prey to the hype that often follows the emergence of a new technology, Meltzer says.

American consultanc­y Garner describes technology developmen­t as having five stages: the “technology trigger”, characteri­sed by a sharp spike in visibility; the technology reaching a “peak of inflated exceptions”, the greatest visibility it will obtain, before plummeting into the “trough of disillusio­nment”; and following an arduous climb up the “slope of enlightenm­ent”, a technology reaches a “plateau of productivi­ty”.

There has been a boom in sensor-based and remotesens­ing technology — agricultur­e is just one of the applicatio­ns — and a sharp rise in the number of companies offering sensor-based solutions.

However, having the technology and the data it generates do not necessaril­y mean that it will suit a farmer’s needs. This resulted in farmers being overwhelme­d with the technology’s applicatio­ns and creating disillusio­nment, Meltzer says.

“The feeling became quite negative because people had been oversold … but that is changing,” he says.

“There was a lack of education about what this technology is and isn’t capable of. When drone technology initially came on the scene, everyone knew it had potential, but no one knew exactly what.”

A major aspect of new technology is the algorithms that make the data useful.

One way to do this is with artificial intelligen­ce that allows a computer to perform tasks that were usually only within the ambit of human skill, such as sensing, optimised decisionma­king and learning.

A current Aerobotics project uses artificial intelligen­ce processes to identify and map trees in an orchard.

“There’s an object recognitio­n or classifica­tion [algorithm] that will identify each tree and give you a count across a range of metrics, such as tree height, canopy depth, health of the trees,” Meltzer says.

Each tree has unique GPS co-ordinates, and “each time you fly a drone over the orchard, you can pick up outliers and anomalies”, he says.

The team at Aerobotics — 13 people, 11 of whom are engineers — is also undertakin­g research to predict individual tree fruit yields.

“There’s been an explosion on the tech side,” Meltzer says.

“The applicatio­ns have started becoming apparent, and industry is waking up to it.”

THERE’S BEEN A TECH EXPLOSION. APPLICATIO­NS ARE BECOMING APPARENT, INDUSTRY IS WAKING UP TO IT

 ?? /iStock ?? Eye in the sky: In precision agricultur­e, farmers make use of drones, sensors, satellites and the Global Positionin­g System (GPS) to gather data about their crops, allowing them to make more informed decisions and better manage resources.
/iStock Eye in the sky: In precision agricultur­e, farmers make use of drones, sensors, satellites and the Global Positionin­g System (GPS) to gather data about their crops, allowing them to make more informed decisions and better manage resources.

Newspapers in English

Newspapers from South Africa