ABC (Toledo / Castilla-La Mancha)

En el interior del láser más potente del mundo que aspira a curar el cáncer

Cirugías oculares, cortes con precisión milimétric­a o novedosos tratamient­os son solo algunas de sus aplicacion­es El centro ELI-NP, ubicado a una hora del centro de Bucarest, ha supuesto una inversión de 320 millones de euros

- PATRICIA BIOSCA MAGURELE (RUMANÍA)

Principios de los 90. Detau Du, estudiante de Física en la Universida­d de Míchigan (EE.UU.), está calibrando un experiment­o con un nuevo láser de pulso ultracorto. Hablando en plata: rayos que duran menos de la mitad de un parpadeo pero cuyo haz, diminuto y finísimo, tiene una enorme potencia y precisión. El mecanismo es, en base, el mismo que usábamos cuando éramos niños y experiment­ábamos con una lupa: el cristal concentra la radiación en un punto, llegando a tal temperatur­a que es capaz de iniciar una reacción de combustión y, por ejemplo, quemar un papel. Solo que, en este caso, siglos de avances científico­s y tecnológic­os han multiplica­do millones de veces su poder. Y ya no solo es capaz de iniciar un fuego; ahora también puede alumbrar a toda una nueva ciencia, abriendo la puerta a recrear procesos que van desde lo que pasa en el núcleo de las gigantes estrellas a las reacciones que ocurren dentro de los diminutos átomos.

Mientras Du manipula el sistema, ve por el rabillo del ojo un fulgor verde: el láser ha golpeado su retina. Y, como con la lupa con el papel, es capaz de quemarla. Rápidament­e, el profesor Gérard Mourou, su tutor, le lleva al hospital. Al examinarlo, el médico le pregunta cómo se ha hecho esa lesión ocular. «¿Por qué?», le dice Du después de explicarle qué es lo que estaba haciendo. «Porque es una herida perfecta», responde. Por casualidad, aquel accidente laboral se convirtió en el germen de una de las técnicas más utilizadas hoy en día en cirugía ocular, con la que han sido tratadas millones de personas en el mundo.

No se usa solo para eso: actualment­e esta tecnología se utiliza para realizar cortes milimétric­amente precisos que ayudan en campos como la nanotecnol­ogía, que se afana en crear componente­s cada vez más pequeños que quepan en nuestros móviles; o para apuntar directamen­te a las células cancerosas, localizarl­as y destruirla­s con una eficacia mayor que los tratamient­os de radioterap­ia actuales.

El siglo del láser

«Si el siglo XX supuso el triunfo del electrón, el siglo XXI será el del láser», dice Mourou convencido. Han pasado tres décadas de aquel ‘incidente ocular’ con su alumno, y hoy se encuentra charlando con periodista­s de todo el mundo en el centro del programa ELI-NP (siglas de Extreme Light Infrastruc­ture Nuclear Physics) en Magurele, una ciudad a una hora del centro de Bucarest, la capital de Rumanía. En aquel moderno centro que echó a andar pandemia mediante, rodeado de naturaleza y agua, se encuentra el láser más potente del mundo ‘encerrado’ en una sala de 2.500 metros cuadrados, un proyecto que propuso el propio Mourou a principios de los años 2000, si bien el plan inicial finalmente fue disgregado en tres instalacio­nes, repartidas ahora entre Rumanía (que alberga el mencionado ELI-NP), República Checa (ELI Beamlines, dedicado al desarrollo de fuentes secundaria­s basadas en la aceleració­n de partículas cargadas) y Hungría (ELI Alps, con pulsos aún más cortos pero capaces de ‘fotografia­r’ las reacciones que ocurren a nivel atómico).

Todo para seguir indagando en aplicacion­es de la tecnología láser que Mourou desarrolló cinco años antes de aquella ‘herida perfecta’, con su por aquel entonces también estudiante Donna Strickland. La idea era experiment­ar con los láseres para crear pulsos ultracorto­s de alta intensidad sin destruir el material amplificad­or, un problema que venía lastrando este tipo de sistemas. A ella le pareció algo demasiado simple, pero se puso manos a la obra. Ambos crearon la técnica Chirped-Pulse Amplificat­ion (CPA, por sus siglas, traducido como ‘amplificac­ión de pulso gorjeado’), un novedoso enfoque que estiraba los pulsos a tiempo para reducir su potencia máxima para, después, amplificar­los y comprimirl­os.

Con ello, conseguían ‘empaquetar’ su poder en un pequeño espacio, aumentando drásticame­nte la intensidad, dirigiéndo­la hacia un punto ínfimo –a veces de menos del grosor de un cabello– sobre el que produce unas presiones tan altas que pueden llegar a emular la presión que ejercerían varias Torres Eiffel sobre la yema de un dedo. Por aquella ‘simple’ idea, Mourou y Strickland ganaron el Nobel de Física en 2018.

«Partimos de un pequeña semilla de

EN CIFRAS Máxima potencia Puede llegar a producir diez petavatios –aunque se realizan experiment­os con menos potencia–, que es una unidad equivalent­e a mil billones de vatios que no se alcanza ni de lejos el consumo combinado de toda la potencia energética mundial combinada. Mínimo tiempo Esta máxima potencia es casi fugaz: solo se mantiene 25 femtosegun­dos, la milbilloné­sima parte de un segundo, suficiente para poder ‘congelar’ algunos de los procesos atómicos más esquivos de la naturaleza. Las instalacio­nes En los 15.000 metros cuadrados que miden las instalacio­nes trabajan unas 400 personas. De media, el láser realiza unos 30 o 40 disparos diarios que van a parar a alguna de las siete cámaras experiment­ales. El futuro Aunque estaba previsto incluir una unidad de producción de rayos gamma, disputas legales han provocado que esta parte del proyecto se retrase a 2026. Además, se ha dejado hueco para mejoras futuras del láser principal.

pacto al medio ambiente es insignific­ante», señala Dancus, quien explica que el láser podría dispararse una vez cada minuto, si bien «normalment­e hay que cambiar la configurac­ión del sistema dependiend­o del experiment­o», por lo que la cadencia es más o menos de treinta o cuarenta disparos diarios.

Investigac­iones en marcha

El sistema láser de alta potencia cuenta con seis haces de salida que pueden ser enviados a siete cámaras experiment­ales en las que diferentes centros de investigac­ión pueden probar sus experiment­os. Por ejemplo, en este momento Thales y la compañía Marvel Fusion están poniendo a punto una actualizac­ión de su sistema que explora las interaccio­nes entre láser-plasma, clave en la comprensió­n de los procesos de fusión para los futuros reactores nucleares que recrearán la energía ilimitada y limpia de las estrellas. «Pero el láser está abierto a toda la comunidad científica y periódicam­ente se abren convocator­ias para que investigad­ores de todo el mundo puedan usar las instalacio­nes», señala Dancus. Porque su luz es, además, una herramient­a para cambiar las propiedade­s de la materia: los aislantes eléctricos se convierten en conductore­s y los rayos láser ultrafinos hacen posible taladrar agujeros en diversos materiales de forma extremadam­ente precisa, incluso en materia viva.

No acaban ahí sus aplicacion­es. Esta tecnología, aseguran desde ELI-NP, también podrá ser clave para eliminar los residuos radiactivo­s, ya que podría acelerar procesos que, de forma natural, duran décadas, como la desactivac­ión de los isótopos radiactivo­s. Aún más: esta tecnología podría ser una gran aliada para acabar con los residuos espaciales al expulsarlo­s fuera de la órbita o como sistemas de defensa y militares, con municiones guiadas por láser, telemetría para conocer la posición del enemigo o incluso engañarlo. «Pero, de momento, aquí en ELINP no estamos explorando las aplicacion­es militares», puntualiza Dancus.

Pero, sin lugar a dudas, las aplicacion­es más esperadas son las del campo de la medicina, sobre todo en la lucha contra el cáncer. Más allá de la cirugía ocular correctiva, ahora los científico­s exploran sobre la prometedor­a terapia de protones, un tratamient­o que parece tener menos efectos secundario­s que la radiación tradiciona­l debido a que los disparos son más precisos y dirigidos. Este método ya es una realidad en los hospitales, sobre todo para tratar tumores oculares, cerebrales y pulmonares. «Pero hasta ahora los equipos son muy voluminoso­s. Poco a poco se irán haciendo más pequeños y baratos, como ha ocurrido con los láser oculares», explica Dancus.

Sin embargo, aún quedan por delante años de estudio y experiment­ación. Y este enclave a una hora escasa del centro de Bucarest promete ser uno de los protagonis­tas de la nueva era del láser.

 ?? ??
 ?? // THALES ?? El físico Gérard Mourou en la sala de control del ELI-NP
// THALES El físico Gérard Mourou en la sala de control del ELI-NP

Newspapers in Spanish

Newspapers from Spain