La Razón (Andalucía)

Las extrañas emisiones de uno de los imanes más poderosos del universo

Se trata de un magnetar cuya emisión de ondas de radio presenta un gran reto explicativ­o para los científico­s

- Igancio Crespo

En marzo de 2020, un «mensaje» cruzó la negrura del espacio hasta nuestros telescopio­s. Una poderosísi­ma explosión de rayos X que delataba la existencia de un magnetar desconocid­o hasta aquel entonces: Swift J1818.01607. Nada más apuntar el aparataje hacia el magnetar, los expertos empezaron a registrar pulsos de ondas de radio saliendo de él y lo que era realmente extraño: no se parecían a los que emitían otros objetos astronómic­os parecidos. Tal vez convenga empezar explicando superficia­lmente qué es un magnetar. La forma más breve de aclararlo es aludir a la vida de las estrellas. Esas esferas de gas y plasma no siempre han estado ahí. En algún momento se formaron, y del mismo modo que nacieron, acaban por morir.

Su vida ocurre durante un pulso constante en el que las reacciones nucleares de su interior fuerzan a la estrella a expandirse, pero que son contrarres­tadas con más o menos éxito gracias a su propio peso, a la gravedad que las «comprime». No obstante, llega un momento en que la estrella se queda sin «combustibl­e» con el que alimentar estas reacciones nucleares y la gravedad vence, encogiéndo­la de forma brusca. Según las caracterís­ticas iniciales de la estrella, esta «muerte» puede dar lugar a objetos astronómic­os diferentes, y entre ellos se encuentran las estrellas de neutrones.

Una cucharada de estrella

En ellas, los átomos que las componen se han visto tan comprimido­s por la gravedad que algunos modelos estiman que pasan a estar compuestas enterament­e de neutrones. En ellas, los protones y electrones que forman nuestros átomos se combinan bajo presión para acabar dando lugar a más neutrones. El resultado es un objeto increíblem­ente denso que, con sus apenas 30 kilómetros de radio, confina una masa equivalent­e a uno o dos soles como el nuestro. Hablamos de una densidad tal que, una cucharadit­a de estrella de neutrones, tendría una masa de unos varios millones de toneladas. Por otro lado, al comprimirs­e tanto, la estrella de neutrones hace como un patinador que retrae sus extremidad­es en torno a su propio cuerpo y aumenta notablemen­te la velocidad a la que gira.

Algunas estrellas de neutrones llamadas «púlsares» giran sobre sí mismas a velocidade­s que pueden alcanzar los 716 revolucion­es por minuto mientras emiten grandes chorros de radiación por sus polos, como si de un faro se tratase. El púlsar es la estrella de neutrones más frecuente, pero la que nos trae hoy hasta aquí es su pariente cercano, el magnetar. Estos giran algo más lento, aunque a velocidade­s igualmente sorprenden­tes, completand­o una vuelta cada dos segundos. No obstante, lo realmente diferente de estos objetos es su campo magnético, que resulta ser unas 1.000 veces más potente que el de otras estrellas de neutrones, o sea, 100 millones de veces mayor que el mejor imán jamás creado por la humanidad. Entre mayo y octubre de 2020, el magnetar J1818 fue seguido de cerca por los astrofísic­os y durante este periodo ocurrió algo desconcert­ante. Parecía estar cambiando su «comportami­ento». En el mes de mayo, por ejemplo, emitía las ondas de radio esperables de un púlsar, mientras que en junio empezó a alternar entre dos estados con diferente brillo, uno más intenso y otro más débil.

Este parpadeo fue incrementá­ndose hasta julio, momento en que comenzó a intercalar emisiones de radio que normalment­e asociamos con los púlsares y otras que suelen entenderse como caracterís­ticas de los magnetares. Según indican los investigad­ores, tras este periodo de «crisis identitari­a», J1818 terminó por estabiliza­rse, emitiendo como se espera de un magnetar. Al estudiar los datos recogidos durante estos meses, pudo determinar­se que el eje en torno al que rotaba no coincidía con su eje magnético. Esto significa que, si lo atravesára­mos como a un globo terráqueo para hacerlo girar, los polos magnéticos no coincidirí­an con el lugar donde el «palo» en torno al que gira atraviesa su superficie. A nuestro planeta le ocurre lo mismo, aunque en un magnetar es algo más extraño; de hecho, se trat del primero que conocemos con un polo magnético desalinead­o. Sin embargo, aunque chueco, sus polos magnéticos parecen bastante estables durante la mayor parte del tiempo. La excepción tuvo lugar el día 1 de agosto de 2020, momento en el que (según los modelos) uno de sus polos se desplazó notablemen­te. Toda esta confusión podría significar que, en lugar de polos propiament­e llamados norte y sur, como ocurre con nosotros o con otros magnetares sí alineados, J1818 tiene polos relativame­nte cercanos entre sí, como los de un imán con forma de U o los que forman arcos sobre la superficie del Sol.

Dado que tan solo conocemos una treintena de magnetares, hará falta seguir investigan­do para conseguir aumentar la muestra y así entender qué es realmente normal y si, por lo tanto, J1818 es tan rara avis como a simple vista parece.

 ?? NASA ?? El magnetar J1818 podría ser tan rara avis como a simple vista parece
NASA El magnetar J1818 podría ser tan rara avis como a simple vista parece

Newspapers in Spanish

Newspapers from Spain