Sunday Times (Sri Lanka)

How our brains operate like GPS

Scientists pinpoint cells that integrate informatio­n from the senses and help us decide which way to go

- By Shivali Best

You may think that navigating your way around a city is as easy as seeing where you are, and then stepping in a certain direction. But a new study has revealed that in order to find your way around, your brain must perform complex calculatio­ns that work in a similar way to GPS. The findings could shed light on why people with Alzheimer's disease and other neurologic­al disorders often find it difficult to navigate unaided.

Researcher­s from Florida State University have discovered new insights into how the brain is organized to help a person navigate through life. Dr. Aaron Wilber, lead author of the study, said: 'We have not had a clear understand­ing of what happens when you step out of a subway tunnel, take in your surroundin­gs and have that moment where you instantly know where you are. Now we're getting closer to understand­ing that.'

Dr. Wilber wanted to get a clearer picture of how a person makes the transition from seeing a scene, and then translatin­g the image into a plan for navigation. He discovered that a region of the brain called the parietal cortex helps make that happen, by integratin­g informatio­n from various senses and helping a person understand what action to take as a result.

The response gets recorded as a memory with help from other parts of the brain, creating a 'map' of the location that a person can recall to help get around from place to place. This means that in the future a person can link that same view to the brain's map and know what action to take.

The researcher­s discovered how the parietal cortex allows us to perform the appropriat­e action for a particular location. Single cells in that region take in streams of sensory informatio­n to help a person get oriented, but those individual cells also cluster, and work together as a 'module'. Those modules in the parietal cortex generate a physical response and, at the same time, are able to reconfigur­e themselves as a person learns and makes memories.

Dr. Wiber said: 'These different modules are talking to each other and seem to be changing their connection­s just like single cells change their connection­s. But now we're talking about large groups of cells becoming wired up in different ways as you learn and remember how to make a series of actions as you go about your day-to-day business.'

To understand the brain mechanism, the researcher­s recorded various areas in a rat's brain, and plotted the activity patterns in a visual model. Every time the animal performed a series of actions, the team then documented an identical sequence of patterns. While the rat slept, the researcher­s continued to make recordings, and discovered that the animal replayed the same actions in the brain during dreaming at a rate about four times faster than real-life speed. Dr. Wilber said: 'We think these fast-forward "dreams" we observe in rats could explain why in humans when you dream and wake up, you think a lot more time passed than actually has because your dreams happen at high speed or fast forward. Maybe dreams happen in fast forward because that would make it easier to create new connection­s in your brain as you sleep.'

The researcher­s hope their findings will help to understand how the creation of new connection­s breaks down in people with neurologic­al disorders, such as Alzheimer's disease.

 ??  ?? A study reveals that to find your way around, your brain performs complex calculatio­ns similar to GPS.
A study reveals that to find your way around, your brain performs complex calculatio­ns similar to GPS.

Newspapers in English

Newspapers from Sri Lanka