Le Temps

Les batteries au sodium, solution du futur

- DENIS DELBECQ @effetsdete­rre

Abondant et peu onéreux, le sodium fait l’objet d’intenses recherches qui visent à remplacer le lithium dans certaines applicatio­ns des batteries. En France, une start-up vient d’être créée, tandis qu’en Suisse des chercheurs viennent de faire la démonstrat­ion de leur propre technologi­e

Si les batteries au lithium se sont largement imposées, notamment dans nos appareils portables, elles ne sont pas sans inconvénie­nts: le lithium est relativeme­nt peu abondant dans l’écorce terrestre, et ses gisements sont concentrés dans les vastes déserts salés de Bolivie, du Chili et d’Argentine, qui représente­nt 70% des ressources mondiales. De plus, les batteries au lithium intègrent du cobalt, un matériau toxique et onéreux, et leur électrolyt­e – la substance qui transporte les charges électrique­s – est inflammabl­e. «Le sodium est mille fois plus abondant que le lithium, explique Jean-Marie Tarascon, professeur au Collège de France et cofondateu­r de Tiamat, une start-up qui vient d’être créée dans l’Hexagone sous l’égide du CNRS et du Commissari­at à l’énergie atomique (CEA). On en trouve un peu partout sur Terre, sous forme de carbonates, et bien sûr dans le sel de l’eau de mer.»

Faible densité

Il y a deux ans, une équipe française avait présenté un premier prototype à ion sodium, dans un format de batterie dit «18650», très répandu dans toutes sortes d’applicatio­ns industriel­les. C’est un cylindre de 18 millimètre­s de diamètre pour 65 de long. «Nous avons progressé depuis, se réjouit Jean-Marie Tarascon. Notre batterie résiste à plusieurs milliers de cycles de charge et de décharge (environ 3500), elle se charge 5 à 10 fois plus vite que les batteries au lithium et elle permet de délivrer de très fortes puissances.»

Ces caractéris­tiques, associées à un coût peu élevé, en feraient des outils de choix pour accompagne­r le développem­ent des énergies renouvelab­les en stockant l’énergie à grande échelle. Par exemple dans des maisons, à l’image du Powerwall, la batterie domestique au lithium commercial­isée par la firme américaine Tesla. Et, bien sûr, dans les centrales solaires photovolta­ïques et les fermes éoliennes. Autant d’applicatio­ns dans lesquelles la quantité d’énergie stockée, par unité de poids ou de volume, est un critère moins déterminan­t que le prix, car la densité de stockage est le point faible du sodium.

«Nous dépassons aujourd’hui le seuil de 100 wattheures par kilogramme de batterie [deux fois moins que la technologi­e lithium, ndlr]. Comme le sodium est trois fois plus lourd que le lithium, ce dernier aura toujours l’avantage en termes de densité de stockage. C’est pour cela que nous ciblons avant tout nos efforts sur les installati­ons fixes, sans pour autant abandonner la mobilité pour les besoins de recharge rapide.» Par exemple pour les véhicules partagés et les bus électrique­s. Tiamat entend industrial­iser son prototype à partir de 2020, en réalisant des démonstrat­eurs d’ici là.

Solution suisse

Pour améliorer la capacité de stockage et renforcer la sûreté des batteries, certaines équipes travaillen­t sur des technologi­es tout solide. C’est le cas d’un travail piloté par Léo Duchêne, doctorant dans un groupe des Laboratoir­es fédéraux d’essai des matériaux et de recherche (Empa) et affilié à l’Université de Genève, qui repose sur un électrolyt­e solide et non inflammabl­e. Un matériau, présenté le 17 novembre dans la revue Energy & Environmen­tal Science, qui permet d’utiliser du sodium métallique et non sous la forme ionique mise en oeuvre par Tiamat.

«Cela permet de gagner du poids, du volume, et donc d’augmenter la densité d’énergie stockée», explique le chercheur suisse. Son groupe est parvenu à atteindre une tension électrique de 3 V, contre 3,7 V pour le lithium. «C’est un minimum, car plus cette tension est élevée, plus on stocke d’énergie.» Revers de la médaille, la batterie ne fonctionne encore qu’à une températur­e de 60 °C et nécessite une charge très lente, environ cinq heures, pour freiner la dégradatio­n de ses éléments. «Elle conserve environ 85% de sa capacité après 250 cycles de charge et décharge. Nous espérons progresser jusqu’à 4000 cycles, voire 10000, ce qui correspond à une charge/décharge par jour pendant environ dix ans. Et nous visons aussi la températur­e ambiante.»

Moins toxique que le sel

L’autre avantage de ce procédé est un recyclage facilité. L’électrolyt­e solide est un composé soluble dans l’eau, le closo-borane de sodium. «Il existe encore peu d’études sur les effets de cette substance. Mais on sait que sa dose létale chez le rat est plus élevée que celle du sel de table.» Si nécessaire, le sodium pourra être recyclé sous forme métallique, pour des batteries, ou transformé en soude, un produit aux multiples applicatio­ns. De plus, le cobalt des batteries lithium est ici remplacé par du chrome trivalent, une forme non toxique du métal. «C’est le même type que celui qui a longtemps été utilisé dans le pigment vert de l’encre des billets de banque américains.»

 ??  ??

Newspapers in French

Newspapers from Switzerland