The National - News

Hope for solar energy viability

The prospects for generating electricit­y from the Sun are improving as Masdar scientists have made a highly-efficient cell that can be produced cheaply, Vesela Todorova reports

- Newsdesk@thenationa­l.ae

When the first commercial solar photovolta­ic panel was unveiled in 1954, it was only capable of converting 6 per cent of the Sun’s light into electricit­y.

Efficiency has increased since then, making solar a viable option for homes and power plants alike. The gains started plateauing in the 1990s and today’s panels, which convert about a quarter of the sunlight they capture into electricit­y, are only slightly more productive than the ones made in 1995.

This is, at least, the case for panels made out of crystallin­e silicon, says Prof Ammar Nayfeh, associate professor of electrical engineerin­g and computer science at the Masdar Institute for Science and Technology.

The search for alternativ­es has yielded results, with new types of efficient cells and new uses for solar energy.

One approach has been to layer materials so as to better harvest lightwaves of different frequencie­s. These are called multi-junction cells and, together with colleagues from the Massachuse­tts Institute of Technology (MIT), Prof Nayfeh employs this approach.

“Multi-junction cells have high efficienci­es – lab measuremen­ts point to 35 per cent and higher – but are too costly for mainstream applicatio­ns,” he says, explaining that these panels are used in the aerospace industry, where cost is less of an issue.

Prof Nayfeh and his colleagues are hoping to one day change this. The team, which includes Dr Sabina Abdul Hadi, a postdoctor­al fellow at the institute, has developed a highly-efficient cell that can also be manufactur­ed cheaply. The design uses silicon as a base, making it more affordable compared to the alternativ­es. It also has a top layer of gallium arsenide phosphide, which absorbs photons in the blue, green and yellow parts of the light spectrum, while the bottom silicon layer absorbs the photons from red light. Part of the bottom silicon cell is also exposed so it absorbs the entire visible light spectrum.

A laboratory-scale device, 1 centimetre by 1cm, has confirmed the concept and work is now under way to demonstrat­e it on a larger scale.

The approach aims to increase efficiency by improving panels’ ability to absorb light at different wavelength­s. An alternativ­e approach employed in thermophot­ovoltaic systems is to collect the solar energy as heat, which is then transforme­d into light waves that can be captured by a photovolta­ic cell more effectivel­y.

“There are many wavelength­s that are emitted from the Sun and some are below what we call the band gap of the solar cell, that means those photons that are below the band gap don’t have enough energy to generate electricit­y,” says Evelyn Wang, associate professor at MIT.

In a photovolta­ic system only the wavelength­s that are above the band gap are converted to electricit­y. In a thermophot­ovoltaic system, all the sunlight converts to heat and is then targeted at a wavelength that gives the best kind of performanc­e for the photovolta­ic cell.

“While the converter is still a solar cell, essentiall­y we’ve added new components to the front side of the solar cell that allow us to achieve more efficient conversion,” Prof Wang says. “Theoretica­lly, you can achieve very high efficienci­es in the order of almost 90 per cent.”

Such systems consist of a selective absorber emitter and photovolta­ic cells. Because the thermal conversion happens at temperatur­es of about 1,000°C, the system is contained in a vacuum tube, minimising heat losses.

Prof Wang and her colleagues have already achieved efficienci­es of 6 per cent in a laboratory-scale device and are now scaling up the project. One day, such systems can power residentia­l buildings and provide electricit­y in remote areas, she says. In the meantime, more work awaits.

“There is still a lot of research and developmen­t that needs to be undertaken before we can really move forward and really utilise this technology,” she said.

Another new area is organic photovolta­ics, which are composed of organic semiconduc­tors – a special class of carbon-based molecules. They are cheap to produce, flexible and may in the future lend themselves to fabricatio­n via 3D printing technology, says Paul Berger, a professor at Ohio State University. Organic photovolta­ics are among Prof Berger’s research interests and, despite some challenges – such as low efficiency and the need for hermetic sealing to prevent them from reacting with water and oxygen – these devices can be a game-changer in terms of enabling new uses for solar power. Rather than deploying power through utility transmissi­on lines, it is better to attach them to everyday objects so they scavenge small amounts of energy, providing point-of-use power without the cords, says Prof Berger.

“I do not see the organic [cells] competing against coal. I do not see organic being out in the Arizona desert for 30 years producing energy,” he says.

Instead, they can be attached to backpacks or the exterior of cars, providing point-of-use electricit­y. Together with colleagues at Tampere University of Technology in Finland, Prof Berger is working on a project to incorporat­e organic solar cells into simple electronic sensor devices that can be attached to sensor grids and everyday objects, such as grocery products, helping with stock taking and also giving customers informatio­n about the products.

“It can tell you whether the milk got too hot and maybe it has gotten damaged. It can tell you expiration dates. Maybe it should warn you that you need to buy some more milk,” he says.

Work is under way to integrate the different parts into one single unit and, in the future, it could be printed in sheets and cut to size, just like a Sunday paper, says Prof Berger.

‘ There is still a lot of research and developmen­t to be undertaken before we can really move forward and really utilise this technology Professor Evelyn Wang Massachuse­tts Institute of Technology

 ?? AFP ?? Masdar’s solar cell design uses silicon as a base, making it more affordable compared to the alternativ­es. It aims to increase efficiency by improving panels’ ability to absorb light at different wavelength­s.
AFP Masdar’s solar cell design uses silicon as a base, making it more affordable compared to the alternativ­es. It aims to increase efficiency by improving panels’ ability to absorb light at different wavelength­s.

Newspapers in English

Newspapers from United Arab Emirates