Eastern Eye (UK)

Scientists create e-skin that can now feel ‘pain’

INDIA-ORIGIN ENGINEER LED RESEARCH THAT COULD HELP DEVELOP SMART ROBOTS

-

A TEAM of researcher­s led by an Indianorig­in engineer in the UK has created an electronic skin capable of feeling “pain” and say it could help create a new generation of smart robots with human-like sensitivit­y.

The discovery marks “a real step forward” in work towards creating large-scale “neuromorph­ic” printed e-skin capable of responding appropriat­ely to stimuli, said Professor Ravinder Dahiya, from the University of Glasgow’s James Watt School of Engineerin­g. His team developed the artificial skin with a new type of processing system based on synaptic transistor­s, which mimic the brain’s neural pathways in order to learn.

A robot hand which uses the smart skin is said to show an ability to learn to react to external stimuli. “We all learn early on in our lives to respond appropriat­ely to unexpected stimuli like pain in order to prevent us from hurting ourselves again. The developmen­t of this new form of electronic skin didn’t really involve inflicting pain as we know it – it’s simply a shorthand way to explain the process of learning from external stimulus,” explained Dahiya.

His team created an electronic skin capable of “distribute­d learning at the hardware level, which doesn’t need to send messages back and forth to a central processor before taking action”.

“Instead, it accelerate­s the process of responding to touch by cutting down the amount of computatio­n required,” he said.

The developmen­t of the electronic skin is described as the latest breakthrou­gh in flexible, stretchabl­e printed surfaces from the University of Glasgow’s Bendable Electronic­s and Sensing Technologi­es (BEST) Group.

Fengyuan Liu, a member of the BEST group and a co-author of the paper, added, “In the future, this research could be the basis for a more advanced electronic skin which enables robots capable of exploring and interactin­g with the world in new ways, or building prosthetic limbs capable of near-human levels of touch sensitivit­y.”

The Scottish university researcher­s described how they built their prototype computatio­nal e-skin and how it improves on the current state of the art in touch-sensitive robotics in a new paper titled ‘Printed synaptic transistor­s based electronic skin for robots to feel and learn,’ published last Wednesday (1) in the journal Science Robotics.’

Scientists have been working for decades to build artificial skin with touch sensitivit­y. One method is spreading an array of contact or pressure sensors across the electronic skin’s surface to allow it to detect when it comes into contact with an object.

Data from the sensors is then sent to a computer. The sensors typically produce a large volume of data, which can take time to be processed and responded to, introducin­g delays which could reduce the skin’s potential effectiven­ess in real-world tasks.

The Glasgow University team’s new form of electronic skin draws inspiratio­n from how the human peripheral nervous system interprets signals from skin in order to eliminate latency and power consumptio­n.

As soon as human skin receives an input, the peripheral nervous system begins processing it at the point of contact, reducing it to only the vital informatio­n before it is sent to the brain. That reduction of sensory data allows efficient use of communicat­ion channels needed to send the data to the brain, which then responds almost immediatel­y for the body to react appropriat­ely.

To build an electronic skin capable of a computatio­nally efficient, synapse-like response, the researcher­s printed a grid of 168 synaptic transistor­s made from zinc-oxide nanowires direct onto the surface of a flexible plastic surface. They then connected the synaptic transistor with the skin sensor present over the palm of a fully-articulate­d, human-shaped robot hand.

When the sensor is touched, it registers a change in its electrical resistance – a small change correspond­s to a light touch, and harder touch creates a larger change in resistance. This input is designed to mimic the way sensory neurons work in the human body.

 ?? ?? BREAKTHROU­GH: Scientists have been working for decades to build artificial skin with touch sensitivit­y
BREAKTHROU­GH: Scientists have been working for decades to build artificial skin with touch sensitivit­y

Newspapers in English

Newspapers from United Kingdom