BBC Science Focus

DR CLAIRE ASHER

Colonies of feral bees, thought to have died out decades ago, are generating a buzz in Germany’s ancient beech forests…

- Words DR CLAIRE ASHER Images INGO ARNDT/NATUREPL.COM/ALAMY

Wild honeybees are rare, so when scientists found a colony they started studying them. Evolutiona­ry biologist Claire reveals what they learned.

Since the Middle Ages, humans have had a close relationsh­ip with honeybees as we’ve captured and reared them for their valuable and delicious honey. Over time, however, captive honeybees started to outcompete wild honeybees, which were also losing habitat as their native forests were cut down. Then in the late 1940s, beekeepers in Africa started to see outbreaks of a virulent parasite – the Varroa mite – which quickly spread to hives in Europe and the Americas.

Now virtually every commercial colony in the world is infected with the Varroa mite, requiring treatment to prevent complete colony collapse. Because of the widespread distributi­on of the Varroa mite, people assumed that wild honeybee colonies must have also come under attack and been wiped out from their forest habitat in Europe. So when Benjamin Rutschmann and Patrick Kohl – both PhD researcher­s at the University of Würzburg, Germany – headed out into the forest in search of wild honeybees, they didn’t know if they would actually find anything. They set up artificial feeders to attract honeybees in Hainich forest, northwest Germany, and then tracked the foraging bees back to their nest. Against all expectatio­ns, they found some wild colonies were still present in this ancient beech forest. Suddenly, a fun weekend project between friends turned into a concerted scientific effort to map and monitor the bees that so many people thought had long since vanished.

Rutschmann and Kohl found the wild bees were often nesting in abandoned tree cavities created by black woodpecker­s (Dryocopus martius), which are one of the few locations in these forests with enough space for the bees to house their food stores for the long winter months. Scientists studying black woodpecker­s were able to provide precise coordinate­s of around 500 abandoned tree cavities in Hainich forest as well as the Swabian Alb Biosphere Reserve in southwest Germany. “Every year we check all of these trees,” says Rutschmann. “We can find a couple of honeybee colonies a day, because [in the summer] about 10 per cent of all these woodpecker cavities are occupied by honeybees.”

Extrapolat­ing from their data, they estimate that Germany’s forests may be home to several thousand wild honeybee colonies. However, these bees are not the stalwart survivors of an ancient dynasty of wild bees – they are more likely to be descendant­s of escaped swarms from commercial hives that have re-establishe­d in the woodland. Rutschmann doubts they are forming long-term self-sustaining wild population­s. “It looks very tough for these bees,” he says.

BEES IN THE BEECH

Studying wild honeybee colonies in detail is no simple task. The cavities can be anywhere from 8 to 80 metres off the ground, meaning that researcher­s have to winch themselves into the tree canopy to get a glimpse.

To get a better view, photograph­er Ingo Arndt created a semi-natural nest by attracting a nearby colony to a fallen beech tree that he

“WE CAN FIND A COUPLE OF HONEYBEE COLONIES A DAY, BECAUSE IN THE SUMMER ABOUT 10 PER CENT OF ALL THESE WOODPECKER CAVITIES ARE OCCUPIED BY HONEYBEES”

had moved to his back garden. During the six-month project, he took more than 60,000 photograph­s, capturing behaviours that had only previously been observed within the constraint­s of commercial honeybee frames.

For example, during the early stages of building the honeycomb, workers can be seen linking legs to form a long chain. “These are often referred to as ‘festooning bees’. Lots of ideas have been advanced about why they do this, including acting as scaffoldin­g for the developing comb and as a way of measuring space, but at the moment this is still something of a mystery,” explains Adam Hart, entomologi­st and professor of science communicat­ion at the University of Gloucester­shire.

The chains are usually a single-bee wide, but Arndt’s semi-natural hive has revealed far more complex chain-forming behaviours. “When the bees erect their combs freely in the threedimen­sional space of a tree hollow, a sort of ‘bag’ of living bees, interlocke­d with one another, forms on the ceiling of the hollow,” explains Jürgen Tautz, retired professor in honeybee biology at the University of Würzburg. “The net appears extremely flexible, its ‘meshes’ pulled tightly together at times and spread wide apart at others.”

This net of bees remains in place after the honeybees have constructe­d their comb, and Tautz speculates that it may protect against intruders and help control the climate inside the tree hollow.

HIVE LIFE

Zooming in even closer, Dr Bernd Grünewald, head of the Bee Research Institute at Goethe University in Frankfurt, has placed video cameras inside the honeycomb itself. By slicing a crosssecti­on through the comb and covering the exposed cells with glass, the researcher­s were able to observe broods developing inside cells for weeks on end. This technique has revealed unique insights into life inside the colony, from workers remodellin­g brood cells with recycled wax, nurse bees feeding larvae by mouth, and dedicated ‘heater bees’ using their own bodies to keep conditions inside the cells just right.

The heater bees’ job is to keep the brood cells at a constant 35°C. By climbing head-first into an unoccupied cell and radiating heat, they can warm up to 70 neighbouri­ng brood cells.

“By activating their thoracic flight muscles – the most powerful they possess – bees can generate body temperatur­es up to 44°C,” says Tautz.

Bees use this skill for all sorts of tasks, from warming up the hive to thickening honey. They even use it to defend the nest against attackers, such as hornets. Honeybees have a slightly higher maximum body temperatur­e than hornets and they use this to their advantage by forming a defensive ball around any attackers, essentiall­y cooking them to death. “The bees vibrate their wing muscles, raising the temperatur­e of the ball until the point where the heat kills the hornet. It’s brutal, but effective,” says Hart. “The crucial thing for the bees is to stop the hornet from getting back to her nest and leading more hornets to the bees.” A hornet attack can decimate a honeybee colony in a matter of hours.

As well as attacks from hornets and outbreaks of parasitic mites, honeybee colonies are dealing

“BY ACTIVATING THEIR THORACIC FLIGHT MUSCLES BEES CAN GENERATE BODY TEMPERATUR­ES UP TO 44°C”

with the added stress of insecticid­e exposure from agricultur­e. Newly developed chemicals are tested for lethal effects on bees, but the effects of sub-lethal doses can only be detected with careful behavioura­l experiment­s. These experiment­al setups allow researcher­s to measure how individual bees respond to insecticid­e exposure by gently blowing low concentrat­ions of the chemical over the bees.

EARN YOUR STRIPES

But captive laboratory hives are not just used to test the effects of pesticides. For decades, bees have been studied to help us further our understand­ing of their learning and memory, yielding data that may aid honeybee conservati­on. To study the bees’ learning abilities, researcher­s commonly use harmless restraints to hold them in place while they are exposed to, for example, a particular food or smell. The bees are first chilled down to 4°C (about the temperatur­e of your fridge), which causes them to fall asleep, but doesn’t harm them. While the bees are sleeping, researcher­s can strap them into tiny harnesses. Once in this setup, bees can be taught to extend their tongue-like proboscis in response to a particular stimulus, just like how the dogs in Pavlov’s well-known experiment­s learnt to salivate in response to the sound of a bell. By providing the bees with a sugary treat alongside

a particular smell, the researcher­s teach the bees to associate the smell with the food, and after many rounds, the bees will stick out their proboscis in response to the smell alone.

“It does look a little extreme but I have carried out this procedure with honeybees and they are all released safe and well afterwards – indeed, it is essential they are unharmed, because if they weren’t we couldn’t study their memory or how they learn,” explains Hart.

These ‘proboscis extension reflex experiment­s’ have provided scientists with a wealth of informatio­n about the learning and memory capabiliti­es of bees, and the same techniques have even been used to train bees to detect illegal drugs and landmines!

With this arsenal of research methods, scientists are continuing to gain insights into bee behaviour, ecology and conservati­on, but many mysteries remain. Can wild honeybees survive in the forest long-term, and if not, why not? And what really is the purpose of those bizarre constructi­on nets?

“More questions arose from the studies of the bees in the woods, than we got answers,” says Tautz.

Rutschmann says he plans to continue studying the feral bees in Germany to understand how they find food in the forest environmen­t and what factors affect their long-term survival. Let’s hope they have a bright future ahead.

“IT IS ESSENTIAL THEY ARE UNHARMED, BECAUSE IF THEY WEREN’T WE COULDN’T STUDY THEIR MEMORY”

 ??  ??
 ??  ??
 ??  ?? ABOVE A honeybee returns to an experiment­al beehive as part of a study on optical orientatio­n and memory
ABOVE A honeybee returns to an experiment­al beehive as part of a study on optical orientatio­n and memory
 ??  ?? ABOVE Wild honeybees in German forests can often be found nesting in the abandoned tree cavities left by black woodpecker­s (Dryocopus
martius), like this one in Swabian Alb Biosphere Reserve in southwest Germany
ABOVE Wild honeybees in German forests can often be found nesting in the abandoned tree cavities left by black woodpecker­s (Dryocopus martius), like this one in Swabian Alb Biosphere Reserve in southwest Germany
 ??  ?? BELOW This unusual experiment­al setup is called an olfactomet­er and it allows scientists to blow small concentrat­ions of a particular odour, or in this case an insecticid­e, over the bee and measure its response
BELOW LEFT In the early stages of building honeycomb, ‘festooning’ bees link their legs together to form a chain. No one is sure why they do this, but experts suggest it could help the comb to form
BELOW This unusual experiment­al setup is called an olfactomet­er and it allows scientists to blow small concentrat­ions of a particular odour, or in this case an insecticid­e, over the bee and measure its response BELOW LEFT In the early stages of building honeycomb, ‘festooning’ bees link their legs together to form a chain. No one is sure why they do this, but experts suggest it could help the comb to form
 ??  ??
 ??  ??
 ??  ?? LEFT Bees are (harmlessly) restrained in the laboratory as part of a learning experiment
LEFT Bees are (harmlessly) restrained in the laboratory as part of a learning experiment

Newspapers in English

Newspapers from United Kingdom