The Scotsman

A green recovery from the pandemic could reduce carbon emissions

Targeting the technologi­es that can have the biggest impact in supporting a green recovery from Covid is critical for the environmen­t, says Gareth Parry

-

Coronaviru­s has fundamenta­lly changed the way most of us do business – fewer people are commuting, flying or making journeys for business or leisure, all of which has had a positive impact on carbon emissions.

However, the longer-term environmen­tal impact of the ‘new normal’ remains a moot point. Current and future global climate impacts resulting from Covid-19, a recent report published in Nature Climate Change, suggest temporary lockdowns could prevent 0.01°C of global warming. This figure is dwarfed by the 1.5°C rise in temperatur­e currently projected by 2050. However, a green recovery from the pandemic could make a much more significan­t contributi­on, potentiall­y reducing that 1.5°C rise by 0.3°C.

Therefore, targeting the technologi­es that can have the biggest impact in supporting green recovery is critical. Is now the time for hydrogen, the perpetual bridesmaid in clean energy developmen­t, to take centre stage?

If we are to achieve ‘net zero’ by 2050, pushed along by the pandemic catalyst, hydrogen has the potential to play a significan­t role. It can de-carbonise domestic heating, transporta­tion and many industrial processes. Other European nations are embracing hydrogen’s low-carbon potential. Germany announced in June a national hydrogen strategy to increase production capacity to 5GW by 2030 and 10GW by 2040, with €7 billion targeted at new businesses and research. In March, the EU announced plans for an Eu-wide hydrogen alliance to identify investment needs and regulatory barriers to its adoption.

Hydrogen technology is relatively simple. It falls into two main areas. Steam reforming produces grey and blue hydrogen by splitting natural gas into carbon dioxide and hydrogen. The production of carbon dioxide means this can’t be considered a ‘ green’ process. Electrolys­is produces green hydrogen. Water is split into its constituen­t elements of hydrogen and oxygen, through a process powered by renewable energy.

Most of the world’s hydrogen demand comes from the chemical, refining, and iron and steel sectors, and in only 4 per cent of cases is the gas sourced from electrolys­is. Nearly all (96 per cent) is sourced from non-renewable sources: natural gas, oil or coal.

There are two main obstacles to wide-scale hydrogen ad option. Firstly, as a fuel, it needs to be stored at a higher pressure. Emerging technology aims to tackle this by focusing on storing hydrogen in liquid organic hydrogen carriers (LOHCS) – fluids that can store and transport energy in the form of hydrogen, before safely releasing it to burn for heat, for example at a power plant or the fuel intake for a car or lorry. Much more energy could be stored and distribute­d at lower financial and social cost via LOHCS than using batteries or transmissi­on wires. Secondly, electrolys­ers often operate at just 65 per cent efficiency. Newer plants are improving efficiency to between 75-80 per cent but with that comes a higher initial capital cost than comparable steam reformers.

Research and demonstrat­or projects are well under way to pro - vide solutions to these obstacles, and the pace around developmen­t of hydrogen is increasing rapidly. However, the additional cost of introducin­g hydrogen into the energy mix is still a major inhibitor. The UK is still missing an overarchin­g hydrogen strategy that brings together government, academics and developers to create and pump-prime a new hydrogen economy. The matching of hydrogen supply with industry demand from the key industrial­ised sectors will be a big contributo­r to making the hydrogen projects of the 2020s and beyond a success. We must not repeat the mistakes of the past and should seize this opportunit­y to lead a hydrogen revolution. Gareth Parry is a member of Shepherd and Wedderburn’s Clean Energy Group and a Partner in the firm’s constructi­on and engineerin­g team

 ??  ??
 ??  ??

Newspapers in English

Newspapers from United Kingdom