Baltimore Sun Sunday

Bug masquerade­s as dinner to catch its dinner

Elaborate disguises allow rove beetles to enter army ant colonies and feast

- By Sean Greene

Army ant colonies are filled with heaps of plundered food and teeming with helpless juveniles that other insects would love to feed on.

But one does not simply walk into an army ant colony and start feasting.

Ill-prepared intruders would face swarms of aggressive insects determined to defend their nest. That’s why many insects — including silverfish, mites and wasps — have developed armor or clever disguises to raid ant colonies.

Several species of rove beetles, a diverse family of tiny, elongated insects, take this approach to the extreme.

These beetles are able to infiltrate ant nests through an elaborate mimicry scheme, evolving ant-like antennae and legs, ant-like smells and even ant-like behaviors to infiltrate the ranks of their hosts.

Over the past 60 million years, this beetle-to-ant disguise has emerged 12 separate times in various genera of rove beetle around the world, according to research published this month in Current Biology.

“There’s nothing else quite like it in biology,” said Joseph Parker, the Columbia University evolutiona­ry biologist who led the study. “These beetles have independen­tly evolved to live with army ants. They sort of morphed into the shape of their ant hosts — and their behaviors have changed, too.”

Parker and his colleague, Munetoshi Maruyama of Kyushu University in Japan, spent a decade in the field searching for the tiny insects among thousands of marching army ants and collecting them for later DNA analysis. Many of the species they found were new to science.

By reconstruc­ting the evolution of the ant-mimicking rove beetle subfamily Aleocharin­ae, the researcher­s found that the insects descend from a common ancestor that lived about 105 million years ago in the early Cretaceous Period, about the same time flowering plants and modern mammals appeared.

The ant impostors’ ancestor would have looked more like today’s “free-living” rove beetles, the ones that do not live as parasites inside ant colonies.

As army ants and termites conquered the tropics during the Cenozoic Era, at least 12 separate lineages of rove beetle took on ant-like characteri­stics.

The researcher­s call this an ancient example of convergent evolution, in which unrelated or separate groups of organisms follow seemingly parallel evolutiona­ry paths.

Rove beetles’ ant mimicry is surprising, in part because of the complexity of the adaptions. Convergent evolution is generally limited to a single trait, such as the shape of eyes or wings.

It’s also unusual that the beetles developed these disguises over such a long period of time.

Usually, convergenc­e takes place over just a few million years. That’s because the species, though separate, share a similar genetic blueprint that allows their evolution to follow similar courses.

That’s not the case for the rove beetles, whose ancient ancestor split into separate groups more than 50 million years ago. In that time, each beetle species became more geneticall­y distinct. Even so, more than a dozen rove beetles still managed to evolve their own ant-like disguises.

All of these beetles evolved to survive in a very particular niche, in this case the inhospitab­le colonies of army ants. In other words, the beetles had no freedom to evolve different ways of life, he said.

“If the selective conditions are right and the starting material is right, then evolution can be extremely predictabl­e,” Parker said. To live in an ant colony, “you presumably have to obey specific rules. That’s smelling like an army ant and behaving like an army ant.”

The ant impostors’ last common ancestor likely passed on a set of adaptation­s that predispose­d the insects to eventually develop traits that approximat­ed the appearance, smells and behaviors of various army ant species.

But first, the beetles needed a reason to venture into a dangerous army ant den: the nest’s ant brood and the scavenged arthropods the ants hoard are attractive sources of food. To survive such a hostile environmen­t, the beetles’ developed a defensive gland on their abdomen that secreted an irritating chemical, called a quinone, which allowed them to defend themselves against aggressive ants.

“They can walk into an ant colony, eat their resources and sort of blast them in the face with quinones,” Parker said. “They can get in the door because they can chemically defend themselves.”

Finally, rove beetles possess a body plan that’s much easier to remodel into the shape of an ant. Free-living rove beetles have a relatively short wing case and a flexible abdomen, so they’re only a few steps away from being ant-like, Parker said. Then all the myrmecoid beetles needed was elongated antennae and legs.

Each myrmecoid rove beetle is adapted to parasitize a single species of ant. The beetles probably live their entire lives inside the ant colony, although no one has ever found their larvae, Parker said.

It’s also unclear whether the ants ever realize that there’s an impostor among their ranks. But, Parker said, myrmecoid beetles have defensive modificati­ons, including thickened, club-like antenna and sturdier body segments, in case they do get caught.

Newspapers in English

Newspapers from United States