Boston Sunday Globe

What makes tardigrade­s nearly radiation proof?

Tiny masters of molecular repair can take a lot

- By Carl Zimmer

To introduce her children to the hidden marvels of the animal kingdom a few years ago, Anne De Cian stepped into her garden in Paris. De Cian, a molecular biologist, gathered bits of moss, then came back inside to soak them in water and place them under a microscope. Her children gazed into the eyepiece at strange, eight-legged creatures clambering over the moss.

“They were impressed,” De Cian said.

But she was not finished with the tiny beasts, known as tardigrade­s. She brought them to her laboratory at the French National Museum of Natural History, where she and her colleagues hit them with gamma rays. The blasts were hundreds of times greater than the radiation required to kill a human being. Yet the tardigrade­s survived, going on with their lives as if nothing had happened.

Scientists have long known that tardigrade­s are freakishly resistant to radiation, but only now are De Cian and other researcher­s uncovering the secrets of their survival. Tardigrade­s turn out to be masters of molecular repair, able to quickly reassemble piles of shattered DNA, according to a study published Friday and another from earlier this year.

Scientists have been trying to breach the defenses of tardigrade­s for centuries. In 1776, Lazzaro Spallanzan­i, an Italian naturalist, described how the animals could dry out completely and then be resurrecte­d with a splash of water. In the subsequent decades, scientists found that tardigrade­s could withstand crushing pressure, deep freezes, and even a trip to outer space.

In 1963, a team of French researcher­s found that tardigrade­s could withstand massive blasts of X-rays. In more recent studies, researcher­s have found that some species of tardigrade­s can withstand a dose of radiation 1,400 times higher than what’s required to kill a person.

Radiation is deadly because it breaks apart DNA strands. A high-energy ray that hits a DNA molecule can cause direct damage; it can also wreak havoc by colliding with another molecule inside a cell. That altered molecule may then attack the DNA.

Scientists suspected that tardigrade­s could prevent or undo this damage. In 2016, researcher­s at the University of Tokyo discovered a protein called Dsup, which appeared to shield tardigrade genes from energy rays and errant molecules. The researcher­s tested their hypothesis by putting Dsup into human cells and pelting them with X-rays. The Dsup cells were less damaged than cells without the tardigrade protein.

That research prompted De Cian’s interest in tardigrade­s. She and her colleagues studied the animals she had gathered in her Paris garden, along with a species found in England and a third from Antarctica. As they reported in January, gamma rays shattered the DNA of the tardigrade­s, yet failed to kill them.

Courtney Clark-Hachtel, a biologist at the University of North Carolina at Asheville, and her colleagues independen­tly found that the tardigrade­s ended up with broken genes. Their study was published Friday in the journal Current Biology.

These findings suggest that Dsup on its own does not prevent DNA damage, although it’s possible the proteins provide partial protection. It’s hard to know for sure because scientists are still figuring out how to run experiment­s with tardigrade­s.

Both new studies revealed another trick of the tardigrade­s: They quickly fix their broken DNA.

After tardigrade­s are exposed to radiation, their cells use hundreds of genes to make a new batch of proteins. Many of these genes are familiar to biologists, because other species — ourselves included — use them to repair damaged DNA.

Our own cells are continuall­y repairing genes. The strands of DNA in a typical human cell break about 40 times a day — and each time, our cells have to fix them.

The tardigrade­s make these standard repair proteins in astonishin­g large amounts. “I thought, ‘This is ridiculous,’” Clark-Hachtel recalled when she first measured their levels.

 ?? HIROKO MASUIKE/NEW YORK TIMES ?? Tardigrade­s are microscopi­c creatures that can withstand high pressure, deep freezes, and even a trip to outer space.
HIROKO MASUIKE/NEW YORK TIMES Tardigrade­s are microscopi­c creatures that can withstand high pressure, deep freezes, and even a trip to outer space.

Newspapers in English

Newspapers from United States