Call & Times

NASA is about to grab a piece of an asteroid

- By SARAH KAPLAN The Washington Post

For the past two years, the OSIRIS-REx spacecraft has sailed across the solar system by the light of the stars. Like ancient mariners and the Apollo astronauts, it needed the constancy of the constellat­ions to navigate the dark unknown.

All that changed Monday, when the NASA probe finally reached its target, an Empire State Building-sized asteroid called Bennu.

Now OSIRIS-REx faces a whole new kind of challenge: exploring the smallest object ever orbited by a spacecraft.

Sitting at mission control at the Denver offices of Lockheed Martin, which operates the spacecraft for NASA, engineer Javi Cerna waited for the signal indicating OSIRIS-REx had begun the burn needed to bring it close to its target.

“Standby for Bennu arrival,” Cerna announced.

He fidgeted in his chair, then stood. The room was utterly silent.

Then Cerna grinned and spread his arms out wide. “We have arrived!” OSIRIS-REx was within 12 miles of Bennu’s surface - about the distance between the White House and NASA’s Goddard Space Flight Center, which manages the spacecraft.

Soon an image of the asteroid appeared on the mission control screens: a diamond-shaped body with a rough, speckled exterior. OSIRIS-REx was finally at the doorstep of its new home.

Bennu is a carbonaceo­us asteroid – a primitive, carbon-rich piece of debris left over from the process that formed the solar system 4.6 billion years ago. OSIRIS-REx will spend the next 18 months there, surveying the landscape and probing Bennu’s chemical makeup before finally selecting what piece of the asteroid it wants to bring back home. In a kiss-like maneuver, the spacecraft’s robotic arm will collect some material from Bennu’s surface, then sling the sample back toward Earth. It will be the largest planetary sample retrieved since the Apollo era, when astronauts brought rocks back from the moon.

Studying the sample in terrestria­l labs, scientists hope to uncover clues about the birth of the planets and the origins of Earth’s water and life. They may

also uncover potentiall­y useful natural resources such as organic molecules and precious metals. And since Bennu has a 1-in-2,700 chance of impacting Earth about 200 years from now, researcher­s figure it would be good to glean some insights about the asteroid’s fate – and how it might intersect with our own.

Bennu is so small, dark and distant (about 75 million miles from Earth at the moment) that scientists could only theorize about what it might look like when they launched OSIRISREx two years ago. To their delight, newly acquired closeups of the asteroid closely match their prediction­s.

But there’s still a lot to learn about the object, said University of Arizona Planetary Scientist Bashar Rizk, who oversees three of OSIRIS-REx’s cameras. In the coming weeks and months, his team aims to get detailed measuremen­ts of the asteroid’s shape, density and gravity that will allow scientists to fine-tune how they orbit it.

Bennu is so small (about 0.05 percent of the mass of Mount Everest) that its gravity is nearly negligible. If you stood at Bennu’s North Pole and jumped, you would achieve escape velocity and go soaring off into the void.

That makes orbiting – which relies on a delicate balance between a spacecraft’s velocity and an object’s gravity – especially hard.

“It will really be record-breaking in terms of the precision, the navigation, compared to anything we’ve done before,” said flight navigator Coralie Adam, an engineer at aerospace company KinetX.

With gravity so weak, other factors could potentiall­y knock OSIRIS-REx off course. Even the faint pressure of sunlight warming the spacecraft can create sufficient thrust to warp its orbit.

To counteract the influence of the sun, Adam and her colleagues will fly over Bennu’s “terminator” line, where day turns to night on the asteroid’s surface. This ensures that the solar radiation pressure remains constant, so engineers can make sure they continuous­ly counteract it.

Yet Bennu’s small size also makes it possible for OSIRISREx to perform a series of carefully choreograp­hed hairpin maneuvers around the asteroid. Engineers will uplink new orbital instructio­ns to the spacecraft every day (a typical planetary mission might only update its trajectory once a week, Adam said). Video animations of the spacecraft’s planned orbits look like an elaborate cosmic ballet.

In 2020, after 18 months of observatio­ns, OSIRIS-REx will swoop close to Bennu and extend a long robotic arm equipped with its sample-collecting instrument, called TAGSAM. With a puff of nitrogen gas, it will blow some material off the asteroid’s surface, gathering as much as 4.4 pounds of rock in the head of the sample.

Newspapers in English

Newspapers from United States