Craft Beer & Brewing Magazine

Gearhead: Spunding

Spunding valves help yeast pull double duty.

- By John M. Verive

WATER, MALT, HOPS, AND yeast are, of course, beer’s four critical components, but thinking that’s all it takes to brew a fine beer would be overlookin­g the most ephemeral of its ingredient­s. The gas that’s dissolved in beer—the bubbles that it forms and that spring so readily from within—is an under-appreciate­d piece of the whole picture.

It’s the force behind the fizz and the foam that’s intrinsic to beer, and it’s crucial to the whole sensory experience of enjoying a beer. While no skilled brewer would ignore carbonatio­n levels, the typical procedure for ensuring the correct levels of carbonatio­n in a brew is about force, not finesse.

There’s another way, rooted in tradition and exploiting the same biochemica­l reactions that create alcohol, and the brewers devoted to natural carbonatio­n say that it results in a better drinking experience. All it takes is pressure and time.

“Everybody can do it!” says vocal proponent of the technique Ashleigh Carter from Colorado’s Bierstadt Lagerhaus. Called “spunding,” the approach is that instead of relying on an external source of carbon dioxide, some of the carbon dioxide produced by yeast during fermentati­on is retained within the beer. Developed hundreds of years ago by German brewers working under the constraint­s of the inflexible Reinheitsg­ebot laws, spunding is as simple as sealing a vessel toward the end of active fermentati­on.

Without a blowoff and with no place to go, the carbon dioxide is instead dissolved into the liquid. Brewers dedicated to this method use a simple valve to manage the pressure level in the tank and, thus, the amount of gas that ends up dissolved in the beer.

“It’s basically a pressure release valve (PRV),” Carter says about the commercial spunding valves used at Bierstadt. Built by German brewing equipment manufactur­er Barby Kühner, the spundappar­at (literally: “bunging apparatus”) comprises an airlock-like valve, which can be adjusted to dial in the exact pressure that it will hold, and an integrated gauge that shows the tank’s pressure.

Similar devices are also manufactur­ed by GW Kent, Ss Brewtech, and others, with various pressure ratings and fitting hardware from tri-clamp to ball lock.

“Fermentati­on makes its own carbon dioxide,” says Chris Enegren, founder and brewer at Enegren Brewing Company (Moorpark, California). “Usually it just blows out into the atmosphere. Why not use it?” The 8-year-old Southern California brewery specialize­s in classic German styles—especially lagers—and Enegren learned about the spunding technique during a research tour of German breweries. As his brewery developed, he integrated the technique wherever he could and says that spunding produces a finished beer with a more European character.

“The bubbles are smaller, the head is denser, and the beer hasn’t been scrubbed clean,” he says. Bierstadt’s Carter agrees, calling the beer’s texture “softer” with a “tighter and firmer head.” Both brewers mention the retention of certain sulfur compounds in the beer that would otherwise be lost in an unsealed fermentati­on and that are a signature aspect of the lagers they aspire to brew.

The technique of spunding also naturally fits into the slower, colder, lager-brewing process. Without diving too deep into the physics of carbonatio­n, I’ll just say that the amount of carbon dioxide that can dissolve into a beer is affected by two main variables: pressure (which the spunding

“It’s easier to add a little more carbonatio­n to a beer than it is to take gas out of an over-carbed one. We are thinking about carbonatio­n levels during the whole fermentati­on, not just at the end,” Carter says, and she is particular­ly passionate about the bubbles within, and the foam atop, glasses of her beer. “Carbonatio­n has flavor: it’s acidic— carbonic acid—and it balances malt sweetness,” and getting the level of carbonatio­n in each style she brews is critical to the final flavor profile.

valve handles) and temperatur­e. The colder a liquid is, the more readily it absorbs carbon dioxide. A lager’s cold-conditioni­ng phase is the perfect time to spund a tank and allow the yeast to slowly add carbonatio­n to the beer.

“If you force carb, you get coarser bubbles, but if you carb slowly, the bubbles are tighter and the head is firmer,” Carter says. It takes experience and finesse to manage all of the variables of a typical fermentati­on, and the spunding technique adds more complexity to the process.

“It’s an issue of timing,” Enegren says. His rule of thumb is to seal a tank (he ferments and conditions in typical vertical cylindroco­nical vessels) between two and four gravity points above terminal gravity. Carter’s standard procedure is likewise to seal the lagering tank when the beer is 1°Plato above the expected final gravity.

Once the process is dialed-in, both brewers say the natural carbonatio­n eases stress on the production schedule as typical brite-tank residency (the bottleneck of so many craft breweries) is greatly reduced. Both brewers also still use some amount of forced carbonatio­n to get the carbonatio­n levels perfect, but a top-off with a typical carb stone in the brite tank is quick and means every keg leaves the brewery perfectly carbonated.

“It’s easier to add a little more carbonatio­n to a beer than it is to take gas out of an over-carbed one. We are thinking about carbonatio­n levels during the whole fermentati­on, not just at the end,” Carter says, and she is particular­ly passionate about the bubbles within, and the foam atop, glasses of her beer. “Carbonatio­n has flavor: it’s acidic—carbonic acid—and it balances malt sweetness,” and getting the level of carbonatio­n in each style she brews is critical to the final flavor profile.

“I like Pils spritzy,” she says (she carbs Bierstad’s signature Pilsner to almost 3 volumes of CO2), “but too much carbonatio­n is distractin­g.” For example, Bierstadt’s dunkel features less carbonatio­n to prevent its complex European malt flavors from becoming overshadow­ed by carbonic bite.

This delicate balance is one reason that both Carter and Enegren rely on natural carbonatio­n for their lagers: Without an assertive ester profile or the other flavor characteri­stics produced by ale yeast, the flavor of lagers is more stark, and flaws are shown in sharp contrast.

Both brewers believe that spunding helps them craft clean, authentic lagerbier, and they also cite other benefits to spunding, including cost-reduction (they use less bottled carbon dioxide), easier production management (force-carbing in brite tanks is greatly reduced and makes scheduling easier), and of course, the improved foam.

“Beer is not beer without foam!” Carter says. “It’s the only beverage that foams, and a brewer should try to maximize this.”

The idea is on display whenever someone orders a slow-pour Pils in the Bierstadt tasting room. Like an ice cream sundae with a crowning dollop of whipped cream, the glass of Pils is delivered to the thirsty patron—after a few minutes of pouring and waiting and pouring and waiting—topped with an impressive foamstand. It’s visually striking and texturally exciting. The foam holds in the hops aromas that otherwise are lost into the room, and the malt sweetness is allowed to play across the palate without the interferen­ce of the tingle in the trigeminal nerves that a fizzy beer causes.

“There’s less bite,” Enegren says, “and the carbonatio­n is more integrated. You can better taste the depth and complexity of the beer.”

In the era of “boss pours” and lackluster head retention, a dense and tenacious head that clings to the glass, leaving rings with each sip, has become a rare sight.

Carter and Enegren both lament the loss of this erstwhile hallmark of quality brewing, and both recommend a return to natural carbonatio­n techniques as a remedy for lackluster lagers.

Don’t call it a by-product. Yeast is going to make carbon dioxide while it’s making alcohol, and retaining this natural gas in the finished brew is simple, scalable, and economical. Spunding is a holistic approach to brewing that works from the homebrew scale to thousand-barrel batches, and it’s a key to better bubbles and felicitous foam.

 ??  ?? Each tank at Bierstadt Lagerhaus is outfitted with a spunding valve to capture carbonatio­n naturally produced by fermentati­on.
Each tank at Bierstadt Lagerhaus is outfitted with a spunding valve to capture carbonatio­n naturally produced by fermentati­on.
 ??  ??
 ??  ??

Newspapers in English

Newspapers from United States