Houston Chronicle

NEWS AND NOTES ABOUT SCIENCE

-

THE NORTHERN AND SOUTHERN LIGHTS ARE ASYMMETRIC DANCERS IN THE DARK

Earth’s auroras, popularly known as the Northern and Southern Lights, are indisputab­ly beautiful. They are also, perhaps surprising­ly, not mirror images.

You can imagine the two like mismatched dancers: Viewed from space, the Northern Lights may contort and groove in one direction, while the Southern Lights could perform a routine that doesn’t quite sync up with its partner’s.

Research published in December in the Journal of Geophysica­l Research: Space Physics, reveals that the cause of this north-south auroral asymmetry is the angle at which the sun’s solar wind and magnetic field approaches Earth.

Earth has two magnetic poles, a north and a south. From these two poles, bunched up magnetic field lines — invisible tendrils that represent the direction and strength of this planetary bar magnet — reach out into space as the planet travels on its orbit. Like fishing lines, they catch energetica­lly excitable particles heading our way in the solar wind. These particles slam into our atmosphere, and energy is released in the form of the colorful auroras.

As these two geographic­ally opposed magnetic poles are reflection­s of each other, it was once assumed that the auroras would be the same, too. However, scientists can now see more clearly that they not only have large-scale difference­s in shapes, but they crop up at slightly different locations around the magnetic poles, too.

Earth’s entire magnetic field is a bit like a bubble, one that is constantly being squashed by the sun’s magnetic field and solar wind. This causes the bubble to stretch out on Earth’s nightside in the shape of a magnetic tail. Space physicists have now found that when the sun’s magnetic field is heading toward Earth in a more east-west orientatio­n relative to Earth’s magnetic poles, it compresses our magnetic tail in a peculiar way. This makes it tilt, which triggers distortion­s that ultimately produce differentl­y shaped Northern and Southern Lights.

This new paper, led by Anders Ohma, a doctoral candidate at Bergen, examined old images of both auroras taken at the same time by two separate satellites. By assessing the most up-to-date informatio­n about the two entities’ magnetic fields, they uncovered clear evidence that the asymmetry occurs because of the angle of the sun’s magnetic field compared to Earth’s field. Robin George Andrews

YELLOWSTON­E’S STEAMBOAT GEYSER IS GUSHING AT A RECORD PACE

YELLOWSTON­E NATIONAL PARK, Wyo. — Late last year, Jeff Carter happened upon Steamboat Geyser, the tallest active geyser in the world, just before it erupted.

“It was so much louder and higher and stronger than anything I had seen, almost frightenin­g,” he said. All but dormant for years, Steamboat is erupting fairly frequently these days, and more people like Carter are getting to witness it.

While Old Faithful is a global icon of punctual eruption — it usually erupts every 90 minutes or so — it is the exception among geothermal features. Most of Yellowston­e National Park’s 1,000 or so geysers are far more unpredicta­ble.

Many geysers, like Steamboat, are quiet and then suddenly come to life. Steamboat sometimes jets water to heights of 300 to 400 feet — far higher than Old Faithful’s top height of 185 feet — for anywhere from a few minutes to about an hour.

After erupting, Steamboat — in Norris Geyser Basin, the park’s hottest — goes into a ferocious, churning steam phase that can last two days.

There were only very occasional eruptions until last March when Steamboat blasted off. It has erupted every week or two since. It set a record with 32 eruptions in 2018, besting its total of 29 set in 1964. It has continued that pace of eruptions in 2019 and last erupted Feb. 1.

Ear Spring Geyser in the park’s Upper Geyser Basin also recently woke and Giant Geyser in the park has also been unusually active.

What has stirred the geysers out of their years of slumber? It’s hard to say precisely. “These geysers are incredibly dynamic,” said Michael Poland, a federal geophysici­st who studies the massive caldera for the Yellowston­e Volcano Observator­y. “Over time their conduit systems expand and contract as minerals precipitat­e in them and close them up, and the pressure builds and reams them out again.”

Add to that large annual swings in the amount of snow and rain, which can change the level of the below-ground reservoirs, and a constant jiggling of the landscape. “We have an average of 1,500 locatable earthquake­s every year,” said Jeff Hungerford, a park geologist. “That acts as an agitator to the system and allows some of these geysers to keep open.” Jim Robbins

BEAKED WHALES ARE THE DEEPEST DIVERS

Cuvier’s beaked whales are among the most mysterious and adept mammals on Earth.

They can dive deeper and hold their breath longer than any other marine mammal. But biologists still know very little about them, because they only surface for a few minutes between most dives, taxing the patience of whale experts, as well as the ability of electronic tags to upload informatio­n, before the whales plunge again into the depths.

A new study, published recently in Royal Society Open Science, is the first to look at a population of these whales that lives off Cape Hatteras, North Carolina. Researcher­s tagged 11 Cuvier’s beaked whales for an average of a month, tracking the length and depths of their dives.

The whales dove almost continuous­ly. They took deep dives of about 1 mile, swimming a half-hour down and the same back up. These were followed by several shallower dives of about 918 feet — nearly two-tenths of a mile — lasting from 15 to 20 minutes, the study found. The whales would spend an average of just over two minutes at the surface, before plunging again.

At night, they sometimes spent longer intervals near the surface, perhaps because they were less concerned about being spotted by predators, said Jeanne Shearer, the paper’s lead author and a doctoral student at the Duke University Marine Lab.

Although diving capacity usually increases with size, Cuvier’s beaked whales dive longer and deeper than larger whales, and are about half the size of sperm whales, which are the second best deep-divers, Shearer said.

It’s not entirely clear how they manage to dive so deep, she said. Her team tracked a few dives of over 1.7 miles.

Diane Claridge, executive director of the Bahamas Marine Mammal Research Organisati­on, said recent research suggests that at least part of the answer may lie in the Cuvier’s muscles. “Basically, they’re made of this muscle that can store lots of oxygen,” Claridge said. The whales have little fat, especially around their midsection­s, which allows them to store more nitrogen, enabling deep dives. Karen Weintraub

WHEN HUNTERS LEFT THEIR DESERT HOME, SO DID MANY ANIMALS

In Australia in recent decades, the bilby, the bettong or rat kangaroo, the brush-tailed possum and other medium-sized mammals all disappeare­d from the Western Desert. It was a mystery: Typically

bigger animals vanish first — often only after people show up.

But ask the people who lived in this desert for 48,000 years what happened and many will tell you: They left.

It’s easy for some to think of humans as the planet’s great destroyers. But in a study published recently in Human Ecology, scientists critique this notion of a human-free wilderness. By examining how an indigenous Australian community has shaped its land through traditiona­l hunting, they present an example where it’s not all bad to have humans around.

“We can still see the ways that the Martu look after country,” said Stefani Crabtree, an archaeolog­ist, and an author of the study.

Their story of stewardshi­p, Crabtree and colleagues say, could be applicable in other environmen­ts threatened by degradatio­n.

The Martu are defined under Australian law as the traditiona­l owners of more than 52,000 square miles of land in the Great and Little Sandy deserts. They hunt with fire, burning small patches of vegetation and returning after the flames subside to capture goannas and other small prey. But in the 1930s, they started trickling out of the desert into nearby missionary settlement­s and cattle ranches. By the 1960s, nearly all traditiona­l hunters had left.

“It was in that time that you get this wave of extinction­s,” said Doug Bird, an author of the study and an anthropolo­gist at Penn State University. It seemed paradoxica­l to him: How could taking hunters out of the desert harm it?

In the 1980s, mining and exploratio­n threatened their homeland, so the Martu returned to reclaim it and resume their hunting traditions.

The small hunting fires were vital for sustaining wild species. Without Martu people starting them year-round, seasonal lightning fires raged. Invasive predators thrived and mammals needing to travel long distances for food or water got hit hard. Even the goethnogra­pher annas they hunted struggled without the Martu.

“The thing about fires is that they’re creating this patchy mosaic of really diverse vegetation,” said Rebecca Bliege Bird, an anthropolo­gist also at Penn State and coauthor. Joanna Klein

A RARE BIRD INDEED: HALF MALE, HALF FEMALE

A bird hopping outside the window lately is the strangest that Shirley and Jeffrey Caldwell have ever seen.

Its left side is the taupe shade of female cardinals; its right, the signature scarlet of males.

Researcher­s believe that the cardinal frequentin­g the Caldwells’ bird feeder in Erie, Pennsylvan­ia, is a rare bilateral gynandromo­rph, half male and half female. Not much is known about the unusual phenomenon, but this sexual split has been reported among birds, reptiles, butterflie­s and crustacean­s.

No one can be sure the bird is a gynandromo­rph without analyzing its genes with a blood test or necroscopy, but the split in plumage down the middle is characteri­stic of the rare event, according to Daniel Hooper, an evolutiona­ry biologist at the Cornell University Lab of Ornitholog­y.

He said that gynandromo­rphs could theoretica­lly be created through the fusion of two developing embryos that were separately fertilized.

It’s also possible that a female produces an egg that contains both copies of her sex chromosome­s, Z and W, and is then fertilized by two sperm, each with a Z chromosome. (While human sex chromosome­s are labeled XX for females and XY for males, female birds are ZW and males are ZZ.) Scientists aren’t precisely sure how such an egg yields a chick with both ZW and ZZ cells.

The split runs down the middle of the bird simply because vertebrate­s develop in a bilaterall­y symmetrica­l way. Although one side would largely be ZW and the other ZZ, previous research suggests there is some mixing of cells in the bird’s body.

But in essence, each side of the bird would be largely the brother or sister of the other. Genes other than those that confer gender also are affected. Sex determinat­ion in mammals is controlled by a gene on the Y chromosome that stimulates the developmen­t of testes, the hormones of which regulate developmen­t of the rest of the organism. That’s why gynandromo­rphism is so rarely seen in mammals, Hooper said.

He doesn’t see any reason that cardinals would be more likely to be of mixed sex than other creatures, but their color contrast by gender makes them particular­ly noticeable. Karen Weintraub

 ?? NASA/GSFC via New York Times ?? Aurora australis captured by NASA’s IMAGE spacecraft. Our planet’s auroras do not mirror one another, and their shapes result from the interplay of the sun and Earth’s magnetic fields.
NASA/GSFC via New York Times Aurora australis captured by NASA’s IMAGE spacecraft. Our planet’s auroras do not mirror one another, and their shapes result from the interplay of the sun and Earth’s magnetic fields.
 ?? Nyalangka Taylor, Doug Bird and Rebecca Bliege Bird via New York Times ?? Nyalangka Taylor, a Martu hunter, burns spinifex grass on the Aboriginal Australian community’s lands to expose the burrows of prey. These small hunting fires have helped sustain wild species, adding to the diversity of vegetation and contributi­ng to food webs.
Nyalangka Taylor, Doug Bird and Rebecca Bliege Bird via New York Times Nyalangka Taylor, a Martu hunter, burns spinifex grass on the Aboriginal Australian community’s lands to expose the burrows of prey. These small hunting fires have helped sustain wild species, adding to the diversity of vegetation and contributi­ng to food webs.

Newspapers in English

Newspapers from United States