Houston Chronicle

SCIENTISTS TOOK AN MRI SCAN OF AN ATOM

- — Knvul Sheikh

As our devices get smaller and more sophistica­ted, so do the materials we use to make them. That means we have to get up close to engineer new materials. Really close.

Different microscopy techniques allow scientists to see the nucleotide-by-nucleotide genetic sequences in cells down to the resolution of a couple atoms as seen in an atomic force microscopy image. But scientists at the IBM Almaden Research Center in San Jose, California, and the Institute for Basic Sciences in Seoul, have taken imaging a step further, developing a new magnetic resonance imaging technique that provides unpreceden­ted detail, right down to the individual atoms of a sample.

The technique relies on the same basic physics behind the MRI scans that are done in hospitals.

When doctors want to detect tumors, measure brain function or visualize the structure of joints, they employ huge MRI machines, which apply a magnetic field across the human body. This temporaril­y disrupts the protons spinning in the nucleus of every atom in every cell. A subsequent, brief pulse of radio-frequency energy causes the protons to spin perpendicu­lar to the pulse. Afterward, the protons return to their normal state, releasing energy that can be measured by sensors and made into an image.

But to gather enough diagnostic data, traditiona­l hospital MRIs must scan billions and billions of protons in a person’s body, said Christophe­r Lutz, a physicist at IBM. So he and his colleagues decided to pack the power of an MRI machine into the tip of another specialize­d instrument known as a scanning tunneling microscope to see if they

could image individual atoms.

The tip of a scanning tunneling microscope is just a few atoms wide. And it moves along the surface of a sample, it picks up details about the size and conformati­on of molecules.

The researcher­s attached magnetized iron atoms to the tip, effectivel­y combining scanning-tunneling microscope and MRI technologi­es.

When the magnetized tip swept over a metal wafer of iron and titanium, it applied a magnetic field to the sample, disrupting the electrons (rather than the protons, as a typical MRI would) within each atom. Then the researcher­s quickly turned a radio-frequency pulse on and off, so that the electrons would emit energy that could be visualized. The results were described in the journal Nature Physics.

“It’s a really magnificen­t combinatio­n of imaging technologi­es,” said A. Duke Shereen, director of the MRI Core Facility at the Advanced Science Research Center in New York. “Medical MRIs can do great characteri­zation of samples, but not at this small scale.”

 ?? Wilkee et al. ?? Four MRI scans of a single titanium atom reveal the magnetic field of the atom at different strengths.
Wilkee et al. Four MRI scans of a single titanium atom reveal the magnetic field of the atom at different strengths.

Newspapers in English

Newspapers from United States