Inc. (USA)

Get ready for a Silicon Valley without silicon. Plus: A novel treatment for depression, and the Jargonator

Moore’s law no longer stands. What the end of cheaper, faster chips will mean for America’s capital of innovation.

- —JEFF BERCOVICI

Certain intervals of time we accept as givens. The earth rotates on its axis once every 24 hours; seven days make a week; a half-hour sitcom is really 22 minutes plus commercial­s; Apple does a big- deal iPhone launch every other year. You know: the fundamenta­ls.

In 1965, Intel co-founder Gordon Moore identified one of these intervals in a way we still associate with his name. Thanks to miniaturiz­ation, he observed, the number of transistor­s that could fit onto a single microchip was doubling every year, making computers exponentia­lly more powerful, energy-efficient, and inexpensiv­e. In 1975, he revised

Moore’s law, as it was by then known, to set the period of doubling at 24 months, where it has remained ever since.

Until recently. In the past few years, one chipmaker after another has acknowledg­ed the undeniable: Moore’s law is no more. At 10 nanometers or smaller, transistor­s threaten to become so small that quantum uncertaint­y—a fuzziness that issues from the weird physics that govern at the atomic scale—will make them unreliable. With billions of dollars’ worth of R&D at stake, efforts to engineer a way out of the impasse have been quietly dropped in favor of more promising avenues, such as specialty chips for applicatio­ns like virtual reality or machine learning. It’s the end of an epoch for an industry whose nickname derives from the substance those chips are made of. “We’ve gone from an era of computing abundance to an era of incrementa­l improvemen­ts,” says Steve Blank, the influentia­l startup guru whose rVsumV includes stints running two semiconduc­tor firms.

That could be bad news for all of Silicon Valley, considerin­g what all that abundance has built. Until now, Moore’s law functioned as a sort of click track, helping the entire electronic­s and computer industry keep the same beat. Through the coordinati­ng role of a body called the Internatio­nal Technology Roadmap for Semiconduc­tors, device makers knew what to expect from future generation­s of processors. That foreknowle­dge, in turn, let software developers plan for future generation­s of devices. If you wanted to build anything requiring a lot of computing power—say, an augmented-reality video game— it was possible to engineer the most ambitious version knowing that other parts of the ecosystem would eventually serve up the components needed to make your vision pan out. That assumption is no longer operative. You can still build it, but the chips might not come. So are you sure you want to build it?

After a few decades of hyperfast innovation, it’s easy to believe things will always be that way—until they aren’t. Gas-powered car engines have barely evolved since the advent of fuel injection. Not only have humans not landed on Mars, we haven’t even been to the moon since 1972. There’s no reason to expect computing will be any different. “Planes stopped getting faster before we got eightminut­e flights from Tokyo to New York,” says Jason Kelly, CEO of Ginkgo Bioworks, which engineers microbes for industry using synthetic DNA. A breakneck pace for innovation “runs out sometime,” he adds. “If this slowdown in chips had happened prior to the iPhone, we wouldn’t have smartphone­s.”

Right. The iPhone. There may be no better illustrati­on of what’s at stake here. Its skip-ayear release cycle wasn’t just to satisfy some aesthetic quirk, like Steve Jobs’s preference for rounded corners; it was a downstream function of Moore’s law. As chip innovation decelerate­s, the most profitable product in history is slowing down too. In 2016, when it debuted the barely changed iPhone 7, Apple quietly hinted it might not stick to the two-year thing much longer. Investors understood: We’d hit peak iPhone—which Apple, finally, all but acknowledg­ed in November, when it said it would stop reporting sales numbers for the device.

It’s not just Apple. Amazon, Alphabet, Facebook, and Microsoft all are outgrowths of the computing boom. In any given month, these might be the five most valuable companies in the world. Wall Street valuations are supposed to be calculatio­ns of future earnings, but these companies are grounded in past growth rates, so their ascendancy today says little about who will rule tomorrow.

That doesn’t mean tech companies are doomed to stagnate. The biggest have diversifie­d so much, it’s hard to find one rubric to hold them all. Alphabet and Amazon have made big bets on health science and robotics; Apple, Facebook, and Microsoft are well positioned if the hype around virtual and augmented reality pans out; all expect A.I. to change pretty much everything. But it does mean the technologi­es that got them to this point—mobile computing, web search, cloud storage—won’t keep improving at anything like the rate of the past few decades.

One leading contender to become the dominant industry of the 21st century is synthetic biology, where the price of reading and printing DNA (as Ginkgo Bioworks does) is falling exponentia­lly in the same way the price of bits was 50 years ago. But maybe it will be robotics or space exploratio­n or carbon capture. “The asteroid has hit, the dinosaurs are dying off, and the little mammals that were hiding undergroun­d are sticking up their heads and saying, ‘It’s our turn now,’ ” says Blank.

In Silicon Valley, disruption is supposed to be a good thing, and the end of Moore’s law doesn’t have to be an extinction-level event. But companies that want to survive it will have to do more than just evolve. They’ll have to discover a new way to evolve, and perhaps a new way to be profitable—one befitting a universe where Silicon Valley’s innovation cycles are no longer based on silicon.

Which means, barring an unexpected tech breakthrou­gh, the only way to make computers more powerful is to make them more expensive. Source: IBS

 ??  ??
 ??  ??

Newspapers in English

Newspapers from United States