Las Vegas Review-Journal

In the depths of an oceanic twilight zone, an escape hatch

News and notes about science

- New York Times News Service

Some 200 to 500 feet below the ocean’s surface is the mesophotic zone, where ancient reefs once drowned, leaving behind empty bodies now inhabited by new corals and colorful mystery fish.

Those who study the zone have long needed a safer way to bring its fishy residents to the surface without killing them.

That’s why scientists at the California Academy of Sciences and the Monterey Bay Aquarium invented a device to safely transport fish, which was described in a paper published recently in the journal Frontiers in Marine Science.

It’s basically a portable decompress­ion chamber, protecting fish from the same damage that humans experience when we dive deep into the ocean and return too quickly to the surface.

To really understand life in the twilight zone’s reefs, scientists need to collect living specimens.

Deep divers carry tiny bubbles of air in their bodies, and fish have swim bladders; both expand as bodies ascend and pressure decreases. And if care isn’t taken to decompress slowly along the way, bubbles expanding in the body can become fatal.

Some scientists poke holes into fish swim bladders with needles to solve the problem. But Bart Shepherd, who directs the Steinhart Aquarium at the California Academy of Sciences, with colleagues there and at the Monterey Bay Aquarium, thought there was a less intrusive way.

They developed transparen­t collection jars 2 feet long that fit into chambers, small and simple enough for divers to carry and manipulate.

Between 2014 and 2017, Shepherd and his colleagues journeyed to the Philippine­s, Vanuatu, Palau and Pohnpei to test the contraptio­ns, collecting 174 fish from mesophotic depths as part of Hope for Reefs, an initiative to better understand and protect some of world’s least known coral habitats.

As the divers ascend with their catch, they insert the jar into the chamber and blow a bubble into it. This maintains the pressure until it reaches the surface. There, a valve releases air from the bubble over two or three days so the fish have time to adapt to surface pressure.

After decompress­ion, the fish temporaril­y occupied makeshift kiddie-pool aquariums in hotel rooms before they were packed and shipped by air to California. Most survived the journey.

— Joanna Klein

How often does lightning strike? More than artists figured

Hungarian researcher­s have found that artists tend to paint lightning with fewer branches than the bursts of electricit­y actually have, according to a study published recently in Proceeding­s of the Royal Society A.

Their research points to how cultural legacies can distort our perception­s of natural phenomena, even those that we encounter with our own eyes.

Using a computer program, Gábor Horváth, head of the environmen­tal optics laboratory at Eötvös Loránd University in Budapest, and his colleagues examined 100 paintings and 400 photograph­s of lightning. They found the pictures and paintings differed mainly in the number of root-like offshoots, which occur when charged particles try to carve the path of least resistance through air.

While painted lightning strikes had 11 arms at most, photograph­s showed lightning splitting into as many as 51 fingers. Actual numbers could be even higher, the authors noted, because some tendrils may be too dim for cameras to register.

In a follow-up experiment, the researcher­s asked 10 people to rapidly evaluate 1,800 photos each. They found that participan­ts could accurately gauge up to 11 lightning branches. As the number of branches increased, people strongly underestim­ated the number of branches, with an exponentia­lly growing gap between actual and perceived figures.

The finding is consistent with the ways humans are known to assess numbers, the authors noted. Below five, we’re able to subitize, or rapidly judge numbers of items without counting. Between six and 10, we count. Above 10, we estimate, with decreasing accuracy. This could explain why artists rarely portray lightning with more than 11 strands, Horváth said.

Simplified, zigzag images of lightning are also culturally ingrained (think of the lightning emoji or the common symbol for electricit­y). The imagery originated with ancient Greek and Roman depictions of Jupiter’s and Zeus’s thunderbol­ts, Horváth said.

While Horváth sees value in debunking “the scientific errors of well-known artworks,” not everyone believes art always needs to be scientific­ally accurate.

Lorraine Daston, director of the Max Planck Institute for the History of Science in Berlin, said that scientific accuracy and artistic goals of “what a painting should do” are moving targets.

Both “are constantly mutating through time,” she said.

— Steph Yin

Becoming bird food helps stick insects live on

It’s obvious why a stick insect’s wardrobe is the way it is. Look like a stick, avoid getting eaten.

But scientists in Japan noticed that despite their camouflage, stick insects became bird food quite frequently. And they also wondered: why do their eggs look like seeds?

In a paper published recently in the journal Ecology, the team of researcher­s suggest that these mostly flightless insects could sometimes benefit when they are eaten, using birds as carriers to disperse their eggs miles away, just like seeds. This passive dispersal mechanism could be why stick insects are found in places far from their original homes.

“It’s commonly assumed that when insects are eaten by birds, they and their unborn young have no chance of survival,” said Kenji Suetsugu, the leader of the study, a biologist who studies parasitic plants at Kobe University. But their results potentiall­y overturn this dogma, he added.

Because plants can’t move around on their own, one way they disperse their seeds is by creating seed-containing fruits that animals eat. Thus, as animals travel, relieving themselves along the way, the plants travel too — through their seeds. But many birds also eat insects. So the researcher­s reasoned, that just like the fruits, the insects could be a means for dispersal, as long as their eggs can pass through the birds unharmed.

One thing that makes stick insect eggs different from most other insects is that they resemble seeds. And they’re coated in a chemical layer of calcium oxalate, the stuff humans find in kidney stones. As you might imagine, it doesn’t dissolve easily. Some of these eggs, carried inside females in certain stick insect species, also don’t need to be fertilized to hatch into viable offspring.

In 2015, Suetsugu and his team mixed dozens of these eggs into bird food and fed it to browneared bulbuls, birds that eat stick insects in Japan.

A small percentage of the eggs from three species of stick insects made it through intact. But two years later, none had hatched.

However, they repeated the experiment in 2017, with 70 eggs from a single species. Twenty percent made it through, and 14 of those hatched, proving that it was possible for birds that consumed stick insects to drop their eggs like seeds to new locations.

— Joanna Klein

In Quebec, warblers gather to set record

Ian Davies got hooked on birds when he was 12. He went to a site near Plymouth, Mass., where volunteers were putting bands on migrating birds.

“They let me release a Canada warbler,” he said, “and that was just game over.”

On May 28, he saw an estimated 700,000 warblers and set the birding world all atwitter with a posting on the site ebird describing the astonishin­g event: “Today was the greatest birding day of my life.”

He may one day top it, because he is 26. But he has a good deal of experience to look back on already. In 14 years of dedicated birding, he has been to 35 countries, and is a project coordinato­r of ebird, a citizen science project for gathering data from the worldwide community of birders, who contribute data on about 100 million sightings a year.

He and his fellow birders were at the Tadoussac bird observator­y in Quebec, on the north bank of the St. Lawrence River. Pascal Côté, the director of the observator­y who has been monitoring birds there for 10 years, said, “I have never seen anything like this.” His group, at a different location in the same area, saw 200,000 birds in what was only one part of a miles-wide corridor. He said he thought the total was probably closer to 500,000, but could be higher.

Davies’ method for counting was to calculate the rate of passage of birds across an imaginary line at different points through the day for a few seconds and extrapolat­e. Côté’s team counted birds at their spot with a different approach, trying to tally the actual numbers, not one by one, but in blocks.

“As far as we’re aware,” Davies said, “it’s three times the number of warblers that anyone has ever seen at a location anywhere. It was basically a river of warblers. All heading southwest.” The previous record was 200,000.

— James Gorman

 ?? CALIFORNIA ACADEMY OF SCIENCES VIA THE NEW YORK TIMES ?? Divers collect fish with a portable decompress­ion chamber developed to help scientists study species from the ocean’s mesophotic zone. The zone is 200 to 500 feet below the ocean’s surface where ancient reefs once drowned but now is inhabited by new...
CALIFORNIA ACADEMY OF SCIENCES VIA THE NEW YORK TIMES Divers collect fish with a portable decompress­ion chamber developed to help scientists study species from the ocean’s mesophotic zone. The zone is 200 to 500 feet below the ocean’s surface where ancient reefs once drowned but now is inhabited by new...
 ?? PATRONS’ PERMANENT FUND AND CHESTER DALE FUND / NATIONAL GALLERY OF ART VIA THE NEW YORK TIMES ?? Paintings by artists over centuries, such as this one, “The Shipwreck” by Claude-joseph Vernet, 1772, have consistent­ly underestim­ated the number of root-like veins in a lightning strike, researcher­s have found.
PATRONS’ PERMANENT FUND AND CHESTER DALE FUND / NATIONAL GALLERY OF ART VIA THE NEW YORK TIMES Paintings by artists over centuries, such as this one, “The Shipwreck” by Claude-joseph Vernet, 1772, have consistent­ly underestim­ated the number of root-like veins in a lightning strike, researcher­s have found.
 ?? IAN DAVIES VIA THE NEW YORK TIMES ?? At an observator­y in Quebec, birders were hoping for a 50,000-bird day, and instead saw more than half a million, including this one photograph­ed by Ian Davies, who called it “the greatest birding day of my life.”
IAN DAVIES VIA THE NEW YORK TIMES At an observator­y in Quebec, birders were hoping for a 50,000-bird day, and instead saw more than half a million, including this one photograph­ed by Ian Davies, who called it “the greatest birding day of my life.”

Newspapers in English

Newspapers from United States