Marlin

ELECTRONIC­S

Dual-frequency vs . chirp technology

- BY ANDREW LAFFERTY

With omnidirect­ional and sector-scan sonar systems seeing a significan­t increase in use, especially in tournament fishing, it is important to note that this is not an option for everyone. Cost, physical size and installati­on requiremen­ts are just a few limiting factors that prevent many boat owners from owning them. However, plenty of fish have been— and will continue to be—caught without an expensive high-tech sonar.

Although marks on your machine do not always translate into guaranteed bites, without a sounder you would essentiall­y be blind to what’s under the water’s surface. And to accurately stay on a ledge or track a thermoclin­e definitely can’t be done by just looking at the water itself.

Sounders show us quick, notable informatio­n. The seabed line is drawn with varying thickness based on the strength of the returned signal. In general, rocky seabeds produce a thicker return than softer sand or mud, which is represente­d as a narrower return. Looking at the opposite end of the scale near the surface, there is typically a certain level of clutter or noise, and you might notice that running through leftover prop wash shows only surface noise, essentiall­y wiping out the rest of the display as the sounder signals bounce off these bubbles. This is due to leftover air pockets in the water column. A smooth, uninterrup­ted flow of water is needed to allow the pulse to travel from the transducer to an object, bounce off it and return to the transducer, creating a picture of what’s below. Air bubbles stop theses pulses in their tracks—as does motoring in reverse—throwing turbulent, bubble-filled water over the transducer and interferin­g with the signal.

FREQUENCIE­S AND PULSE LENGTH

Convention­al sounders typically possess dual frequencie­s with a low and a high: 50 kHz and 200 kHz, respective­ly. The frequency represents the waveform of the pulse that is generated. For example, a 50 kHz frequency generates 50,000 cycles per second during the entire transmitte­d pulse. This is important in understand­ing the difference in the image drawn on the screen. Frequency determines the wavelength, and wavelength determines the response.

The pulse’s wavelength directly correlates to the type of object it will bounce off. A 200 kHz pulse has a wavelength near a quarter-inch in physical size, while a 50 kHz wave is a little over 1 inch, and the shorter wavelength is able to bounce off smaller objects with higher

resolution. This has its drawbacks, though, merely because lower frequencie­s are able to travel farther through salt water.

The 50 kHz wavelength is much better suited at transmitti­ng through salt water, but it may travel around smaller objects and not return back to the transducer, or it may draw individual responses together as a single return.

CHANGE THE PULSE, BETTER THE RETURN

Chirp technology changes the waveform of the pulse so it is no longer a single frequency but rather a sweep of various frequencie­s. Depending on manufactur­er and model, the chirp pulse would be a sweep somewhere within the specificat­ions of the installed transducer. A low chirp pulse may sweep from 28 to 60 kHz, compared to the fixed 50 kHz of traditiona­l sounder; a high pulse may sweep from 130 to 210 kHz, compared to a traditiona­l sounder’s 200 kHz pulse.

The pulse lengths of chirp sounders can also be much longer, investing more power into the water, without losing resolution as a fixed-frequency unit would. These difference­s translate into better display resolution and target separation. Where a school of bait with a larger feeding pelagic nearby might show as one solid mass on a convention­al fixed-frequency system, a chirp sounder has an improved likelihood of showing larger predators both below and around the baitball. As the sound wave sweeps a frequency range, each pulse is given the opportunit­y to acquire target responses based on the frequency that is returned.

Chirp technology has no doubt improved today’s sounder capabiliti­es and image quality, but as with any of the tools we use on board, it is up to the operator to be sure he is using the system for the intended purpose. For example, when trolling in deep, open water, it might be necessary to bring up the range to 500 feet—or less—to produce an image large enough to see the responses. And, when deep-dropping, using the bottom lock and zoom features can provide a better view of the targeted area. Similar to a chart or radar display, zoom and range are important for the best viewable picture.

Extremely common across all the current manufactur­ers’ offerings, chirp is not just a buzzword or sales gimmick. Not having the technology in your arsenal does not necessaril­y mean you are missing fish by not having it, but it does mean you will not have the increased resolution or target separation you’d get by using it. Chirp simply offers you a more detailed response—allowing individual targets of varied sizes to be drawn separately.

We all want to know what is swimming in the depths, especially when we are on a fishing mission. With the variable-frequency wavelength we get in chirp technology, we just get to see it more clearly.

 ??  ??
 ??  ?? Should a feeding event like this one be unfolding underwater, it’s possible a convention­al, dual-frequency sounder might misinterpr­et the individual­s as a single mass.
Should a feeding event like this one be unfolding underwater, it’s possible a convention­al, dual-frequency sounder might misinterpr­et the individual­s as a single mass.

Newspapers in English

Newspapers from United States