Santa Fe New Mexican

SMART cables: A new undersea look at earthquake­s

New transocean­ic lines will offer unpreceden­ted access to seismic data in thousands of new locations

- By Charlotte Rowe For The New Mexican Charlotte Rowe works in the Earth and Environmen­tal Sciences Division at Los Alamos National Laboratory, where she supports the Ground-based Nuclear Detonation Detection team. She holds degrees from New Mexico Tech a

Approximat­ely 10,000 earthquake­s large enough to be felt by humans occur every year as tectonic plates below the earth’s surface slide past one another to relieve stress. The seismic activity from these earthquake­s is recorded at thousands of seismic stations around the world. Using data from these stations, scientists can learn more about the geology inside of the earth, including things like earthquake location and magnitude.

Even with all those seismic stations, though, and more than 100 years of earthquake records, there are still significan­t holes in the data because seismic stations are not sampling the earth evenly or completely.

This happens for two reasons. First, large earthquake­s do not occur uniformly across the globe. Most happen at the edges of tectonic plates, which means that scientists have more data from those areas than from areas with less seismic activity.

Second, except for a few near-shore underwater seismic stations, almost all the seismic stations in the world are on land. In other words, seismologi­sts know much less about seismic wave behavior deep below the ocean floor. Given that oceans cover two-thirds of the planet, that’s a big gap in knowledge.

But now, that gap may be closing thanks to an internatio­nal joint task force that is exploring the use of special underwater telecommun­ications cables to gather geophysica­l data.

Currently, more than 600,000 miles of underwater cables crisscross the ocean floor, but they are deaf, dumb, and blind in the sense that they carry massive amounts of data (such as financial transactio­ns and internet) from end to end, but do little else in between.

The task force, of which Los Alamos National Laboratory is a part, is proposing the next generation of cables, called Science Monitoring and Reliable Telecommun­ication (SMART) cables, which would be outfitted with scientific sensors every 50 miles or so. These are primarily for oceanograp­hic monitoring, but they also include seismic sensors.

As SMART cables replace current cables, scientists will gradually have access to seismic data in thousands of new locations. More data means a better understand­ing of the physical properties of rocks deep inside the earth.

Los Alamos researcher­s are also considerin­g how this expanded seismic coverage will improve earthquake location and size estimates, which in turn improves their ability to characteri­ze undergroun­d nuclear tests, such as those by North Korea. Buried explosions generate seismic activity, and detecting and describing that activity is part of the lab’s mission under the National Nuclear Security Administra­tion’s Ground-Based Nuclear Detonation Detection program.

More seismic data will likely also increase researcher­s’ ability to estimate seismic hazards — essentiall­y the probabilit­y of an earthquake in a given location and how extreme the resulting damage to human life and infrastruc­ture might be. Because earthquake­s can trigger tsunamis, tsunami hazards can also be assessed.

First, researcher­s must demo a prototype of the SMART cables before this technology can really start making waves. Then scientists will start filling in the holes with data from the watery part of the world.

 ??  ?? Science on the Hill
Science on the Hill

Newspapers in English

Newspapers from United States