Santa Fe New Mexican

Summer solstice sparks theory on life arising elsewhere in cosmos

- By Shannon Hall

On the summer solstice Thursday, the Northern Hemisphere will dip toward the sun and bathe in direct sunlight for longer than on any other day of the year. That will cause the sun to rise early, climb high into the sky and set late into the evening.

The solstice occurs because Earth does not spin upright but leans 23.5 degrees on a tilted axis. Such a slouch, or obliquity, has long caused astronomer­s to wonder whether Earth’s tilt helped create the conditions necessary for life.

It’s a question that has been brought to the forefront of research as scientists have discovered thousands of exoplanets circling other stars within our galaxy, bringing them closer to finding an elusive Earth 2.0. Is life only possible on an exoplanet with a tilt similar to ours? Or will life arise on worlds that spin straight up and down like spinning tops or on their sides like a rotisserie chicken? And what if a world swings between two axial tilts? The answer is far from simple.

Astronomer­s suspect that they will vary wildly — much like the planets within our own solar system. Mercury at 0.03 degrees hardly slouches, while Uranus leans on its side at 82.23 degrees.

Those two extremes would be far from habitable, even if those worlds looked like Earth in all other regards, said René Heller, an astronomer at the Max Planck Institute for Solar System Research in Germany.

If the planet had no slouch, it wouldn’t have seasons.

The hemisphere­s would never dip toward or away from their star.

Instead, the poles (which always point toward the frigid depths of space) would be so cold that carbon dioxide would be pulled from the sky, an effect, Heller argues, that would cause the planet to lose its precious greenhouse gas so that liquid water could never form. But if the planet spun on its side, life might also be hard to come by. There, the poles alternativ­ely point directly toward and away from the host star, causing one hemisphere to bathe under the sun both day and night during that long summer, while the other hemisphere experience­s a frigid and dark winter — before the seasons flip. Although such a planet might not necessaril­y lose its liquid surface water, any life would have to adapt to a world that permanentl­y switches between boiling and freezing.

Heller argues that the optimal tilt runs from 10 degrees to 40 degrees. As such, there are several knobs that must be tuned to allow life, and Earth’s mild obliquity is one.

Rory Barnes, an astronomer at the University of Washington, disagrees. “There’s nothing special about 23.5 degrees,” he said. “You could have any obliquity and you could still have habitable conditions on the surface of the planet.”

Newspapers in English

Newspapers from United States