Texarkana Gazette

NEW STUDY: INSIGHTS INTO HOW WE GET STRONGER

Nervous system starts changing first

- By Gretchen Reynolds

“Strength isn’t just about muscle mass. You get stronger because the neural input to your muscles

increases.”

—Isabel Glover

When we start to lift weights, our muscles do not strengthen and change at first, but our nervous systems do, according to a fascinatin­g new study in animals of the cellular effects of resistance training. The study, which involved monkeys performing the equivalent of multiple one-armed pullups, suggests that strength training is more physiologi­cally intricate than most of us might have imagined and that our conception of what constitute­s strength might be too narrow.

Those of us who join a gym — or, because of the current pandemic restrictio­ns and concerns, take up body-weight training at home — may feel some initial disappoint­ment when our muscles do not rapidly bulge with added bulk. In fact, certain people, including some women and most preadolesc­ent children, add little obvious muscle mass, no matter how long they lift.

But almost everyone who starts weight training soon becomes able to generate more muscular force, meaning they can push, pull and raise more weight than before, even though their muscles may not look any larger and stronger.

Scientists have known for some time that these early increases in strength must involve changes in the connection­s between the brain and muscles. The process appears to involve particular bundles of neurons and nerve fibers that carry commands from the brain’s motor cortex, which controls muscular contractio­ns, to the spinal cord and, from there, to the muscles. If those commands become swifter and more forceful, the muscles on the receiving end should respond with mightier contractio­ns. Functional­ly, they would be stronger.

But the mechanics of these nervous system changes have been unclear. Understand­ing the mechanics better could also have clinical applicatio­ns: If scientists and doctors were to better understand how the nervous system changes during resistance training, they might be better able to help people who lose strength or muscular control after a stroke, for example, or as a result of aging or for other reasons.

So, for the new study, which was published in June in the Journal of Neuroscien­ce, researcher­s with the Institute of Neuroscien­ce at Newcastle University

in England decided to teach two female macaque monkeys to lift weights, and the researcher­s watched what happened to their nerves.

They began by surgically implanting tiny transmitte­rs and electrodes in the monkeys (complying with regulation­s for humane treatment of animals during research). These electrodes would stimulate different sets of nerves, so the researcher­s could track how nerve responses changed as the animals lifted.

Macaque monkeys, like humans and other primates, have two major bundles of nerves that transmit messages from the motor cortex. One, called the reticulosp­inal tract, is ancient in evolutiona­ry terms, with connection­s throughout the brain and into the brainstem. Many species, including rodents and reptiles, sport a reticulosp­inal tract. These nerves generally direct broad motor skills, like posture.

But most exercise neuroscien­tists have long believed that a separate bundle of nerves, called the corticospi­nal tract, is most likely involved in increasing muscle strength when we start weight training. The corticospi­nal tract is younger in evolutiona­ry terms and more refined than the reticulosp­inal tract, controllin­g fine motor skills like grasping objects. It is found in primates, like us and monkeys, but rarely in reptiles.

The researcher­s began prompting the monkeys to lift, using treats to get them to pull a weighted lever with their right arms, while the scientists measured which nerves became most activated — and by how much — before, during and after the workouts.

For almost three months, the monkeys trained five times a week, with the

ers increasing the amount of resistance on the lever until the monkeys could complete a workout equivalent “to a human doing 50 one-armed pullups,” said Isabel Glover, a neuroscien­tist and author of the new study with Stuart Baker, the director of the Movement Laboratory at Newcastle University.

This impressive gain in strength was driven, the electrode data showed, by changes in one set of nerves, which began sending progressiv­ely stronger, more urgent commands to the muscles. But it was not the corticospi­nal tract. It was, instead, the older, more primitive reticulosp­inal tract that strengthen­ed when the animals lifted.

This finding underscore­s that “strength isn’t just about muscle mass,” Glover said. “You get stronger because the neural input to your muscles increases.”

Perhaps more poetically, the data tell us that strength may be even more fundamenta­l to our well-being than we already expect, since gaining it involves and alters some of the most ancient components of our central nervous system.

Of course, this study was conducted with macaques, which are not people, although they “have a very similar nervous system to humans,” Baker said.

It also was small, involving only two monkeys, neither of them male. “These are really fundamenta­l features of motor control, so we wouldn’t expect any difference­s between males and females,” Baker said. But it is impossible yet to be certain.

Even with those caveats, though, the results intimate that we most likely are hardwired to respond quickly and well to weight training and should not be deterred if our muscles do not at first bulge. “Initial gains are all about strengthen­ing the reticulosp­inal tract,” Baker said. “Only later do the muscles actually start to grow.”

 ?? AdobeStock ?? ABOVE: A new study suggests that strength training is more physiologi­cally intricate than most of us might have imagined and that our conception of what constitute­s strength might be
too narrow.
AdobeStock ABOVE: A new study suggests that strength training is more physiologi­cally intricate than most of us might have imagined and that our conception of what constitute­s strength might be too narrow.
 ??  ??

Newspapers in English

Newspapers from United States