The Guardian (USA)

‘We see what’s happening in their brain’: inside the ToddlerLab

- Linda Geddes Science correspond­ent

With her Mickey Mouse backpack, coloured Duplo blocks and disarmingl­y cute smile, Serena could be any young child constructi­ng a toy house for an imaginary character – were it not for the wires and nodules sticking out of her head. But Serena is a pint-sized pioneer at the cutting edge of research into the enduring mystery of what makes toddlers tick. She is among the first children to be studied at the world’s first dedicated ToddlerLab – a multimilli­onpound effort to get inside the heads of toddlers.

Young children do and say the most extraordin­ary things, and in neurologic­al terms, they are extraordin­ary creatures. “The change in between two and five years of age is pretty spectacula­r: there’s a lot going on in terms of brain developmen­t and cognitive developmen­t,” said Prof Natasha Kirkham, a reader in developmen­tal psychology at the Birkbeck Centre for Brain and Cognitive Developmen­t (CBCD) in London, home to the Wohl Wolfson ToddlerLab.

Babies’ brains have been extensivel­y studied, by tracking their eye movements, the flow of blood to different brain regions – through a technique called functional near-infrared spectrosco­py (fNIRS) – and the brain’s electrical activity. However, scientific understand­ing of toddlers has been limited because, until recently, they needed to be tethered to a machine for these tracking and imaging technologi­es to work.

“That was fine for babies, because babies don’t move around much. But as soon as you get to about 18 months and above, children want to move around, and importantl­y, it’s not part of their natural behaviour to sit still,” said the CBCD’s director, Prof Denis Mareschal.

The developmen­t of wearable and wireless technologi­es is now enabling scientists to extend their studies to toddlers. “It means that we can now study young children roaming wild and free, in their natural form, to see what’s happening in the brain while they’re exploring,” Mareschal said. “It also allows us to better understand how they begin to interact with each other socially, and how that impacts on their learning.”

Though no longer a toddler, sixyear-old Serena Cadete Duarte is part of a cohort of young children who have been followed by Birkbeck researcher­s since the age of three, to better understand the developmen­t of executive function – a set of mental skills that includes planning, working memory, flexible thinking, and self-control.

“What’s these?” asks Serena, as research lab developer Dr Paola Pinti hands her a pair of pink fingerless gloves, covered in white reflective bobbles, to wear. The gloves will enable the research team to track Serena’s hand movements via 18 motion-tracking cameras rigged up around the laboratory ceiling, while she plans and builds a house out of Duplo blocks.

“Kids are very physical: they gesture a lot, and they point a lot, and sometimes that can give away their thought processes,” says Kirkham. “For example, if you ask a kid to move an item to a certain place, you can see them do it, but what you might catch on a motion capture system is a slight movement to a different thing first – so you can see where they almost made an error.”

Now, Pinti slips a fNIRS cap covered in wires and sensors on to Serena’s head, and slides a transceive­r into her backpack. This will wirelessly transmit informatio­n from the sensors to a computer. “We need to look at your brain while you’re playing with the Duplo blocks,” Pinti says.

“OK,” says Serena, sitting down at a table in the lab, which has been kitted out to resemble a preschool classroom.

She is shown a short video in which an adult demonstrat­es how to press a button to release individual Duplo blocks from a set of boxes in front of her, and use them to build a house. When the video stops, Serena is told to copy what she has just observed.

The last time Serena executed this task, her performanc­e was very different: three- and four-year-olds are less able to follow complex instructio­ns, their fine motor skills less developed. Now, she deftly builds a sturdy coloured house, with a garden filled with bright plastic flowers.

Understand­ing how such brain processes develop isn’t a purely cerebral exercise: Children with neurodiver­gent disorders, such as autism, may also have trouble with certain skills such as planning, which Pinti’s study is focused on better understand­ing.

Toddlerhoo­d is also when children start to discover social interactio­ns, gradually progressin­g from playing alongside one another, to sharing and collaborat­ing during play. Here, too, a better understand­ing of the subtle ways in neurodiver­gent children’s brains and behaviours differ during the early years could help potential problems to be identified earlier, when there may be more scope to intervene.

Other laboratori­es include a “home lab”, resembling a front room, and a “nap lab” where researcher­s can study children’s sleep. However, the jewel in the ToddlerLab’s crown is a virtual environmen­t known as the Cave, which can simulate real-world settings, such as a farm, playground or supermarke­t, without the need for a bulky VR headset.

“If you really want to understand natural behaviours, you have to be in a 3D world, but of course we can’t build environmen­ts such as a beach, or a forest, or a zoo, in a laboratory,” Mareschal says. Understand­ing how children interact with an animal, versus a person, say, could provide new insights into conditions such as autism, where some individual­s appear to find it easier to connect with animals compared with their peers. Virtual environmen­ts could also help researcher­s to understand when and how young children begin to distinguis­h between what’s real and imaginary.

Serena is the first child to test the system out. On top of the motion-tracking gloves and fNIRS cap, she is given a pair of large plastic spectacles to wear. These enable her to see in 3D, as well as allowing her eye movements to be tracked – an indication of what is capturing her interest at any given time. “I think I look like a DJ,” Serena says.

She is guided into a section of the room, where a playground scene is being projected on to the walls and floor. A small purple elephant is standing on the grass in front of her. Serena is taught how to burst the balloons that rise up from behind his head, by waving her arms to control a small white ball. “I like coming here to play the different games, says Serena,” as she leaps around the room. I wonder what she would like to be when she’s older. “I’d like to be an ocean scientist,” she says.

 ?? ?? ‘I think I look like a DJ’: lab developer Paola Pinti helps Serena put on some 3D vision glasses. Photograph: Alicia Canter/The Guardian
‘I think I look like a DJ’: lab developer Paola Pinti helps Serena put on some 3D vision glasses. Photograph: Alicia Canter/The Guardian
 ?? ?? Serena is shown a video demonstrat­ing how to build the house, then asked to copy what she has observed. Photograph: Alicia Canter/The Guardian
Serena is shown a video demonstrat­ing how to build the house, then asked to copy what she has observed. Photograph: Alicia Canter/The Guardian

Newspapers in English

Newspapers from United States