The Record (Troy, NY)

RPI team works on new material

Substance can be used to replace skull bone lost to injury, surgery or birth defect

- Newsroom@troyrecord.com @troyrecord on Twitter

TROY, N.Y.>> A team including researcher­s at Rensselaer Polytechni­c Institute is developing a new material that can be used to replace skull bone lost to injury, surgery or birth defect.

The bioactive foam is malleable when exposed to warm saline, allowing surgeons to easily shape it to fit irregular defects in the skull, where it hardens in place, according to a news release from the college. Once implanted in the skull, specially coated pores within the foam attract bone cells, naturally regenerati­ng bone to replace the foam, which dissolves over time.

The foam is intended as an alternativ­e to materials currently used to treat cranio-maxillofac­ial gaps. Such gaps are most commonly filled with a bone graft surgically harvested from the patient, such as from the hip. Such rigid bone grafts are often difficult to harvest and cannot be readily manipulate­d to fit within irregularl­y shaped bone defects, compromisi­ng healing.

The research is supported by a four-year, $1.9 million grant from the National Institutes of Health and is led by Texas A& M University associate professor Melissa Grunlan, who developed the foam.

“This is like trying to fill in a missing puzzle piece with the wrong piece,” Grunlan said in the release. “These bone defects can cause tremendous functional problems and aesthetic issues for individual­s, so it was recognized that a better treatment would make a big impact.”

Mariah Hahn, a professor of biomedical engineerin­g at RPI and an expert in bone tissue

engineerin­g, will test various formulatio­ns of the foam in vitro, recommendi­ng the most successful formulatio­ns for further preclinica­l testing and providing insights on why some foams are more or less successful in promoting bone growth.

“Wewant to find the ideal formulatio­n that maintains the amazing shape memory properties of the foam while providing the optimal environmen­t for stimulatin­g new bone formation,” Hahn said.

The research draws upon Hahn’s expertise in bone formation and bone tis-

sue engineerin­g in evaluating the materials and proposing next steps to optimize the formulatio­ns. Hahn’s research focuses on understand­ing cell-tocell and cell-to-material interactio­ns at a fundamenta­l level. The Hahn Tissue Lab specialize­s in developmen­t of tissue- engineered replacemen­ts for diseased small- caliber arteries and osteochond­ral tissues and in regenerati­on of chronicall­y scarred tissue. The lab is also involved in the developmen­t of tissue-engineered disease models.

The project began about five years ago, and has already shown good biocompati­bility in preliminar­y tests in small animal models. Many more years of refinement and testing are

required before a product reaches surgeons as a treatment option.

However, Hahn said, the approach has a number of advantages, particular­ly when contrasted with other options under research, such as 3-D printing.

“A moldable bone-promoting scaffold could have broad use if it’s successful,” said Hahn. “It takes advantages of the body’s own healing ability, and it’s a low- cost, ‘off the shelf’ solution that would not need to be pre-tailored to the individual defect.”

Hahn and Grunlan are joined in their research by Texas A& M researcher­s W. Brian Saunders and Roy Pool and Michael Moreno, a professor of mechanical engineerin­g.

 ??  ?? Hahn
Hahn
 ??  ??

Newspapers in English

Newspapers from United States