Daily Nation Newspaper

Self-healing fungi concrete could provide sustainabl­e solution to crumbling infrastruc­ture

-

A NEW self-healing fungi concrete, co-developed by researcher­s at Binghamton University, State University of New York, could help repair cracks in aging concrete permanentl­y, and help save America's crumbling infrastruc­ture.

Congrui Jin, assistant professor of mechanical engineerin­g at Binghamton University, has researched concrete and found that the problem stems from the smallest of cracks.

"Without proper treatment, cracks tend to progress further and eventually require costly repair," said Jin. "If micro-cracks expand and reach the steel reinforcem­ent, not only the concrete will be attacked, but also the reinforcem­ent will be corroded, as it is exposed to water, oxygen, possibly CO2 and chlorides, leading to structural failure."

These cracks can cause huge and sometimes unseen problems for infrastruc­ture. One potentiall­y critical example is the case of nuclear power plants that may use concrete for radiation shielding. While remaking a structure would replace the aging concrete, this would only be a short-term fix until more cracks again spring up. Jin wanted to see if there was a way to fix the concrete permanentl­y.

"This idea was originally inspired by the miraculous ability of the human body to heal itself of cuts, bruises and broken bones," said Jin. "For the damaged skins and tissues, the host will take in nutrients that can produce new substitute­s to heal the damaged parts."

Jin worked with professor Guangwen Zhou and associate professor David Davies, both from Binghamton University, and associate professor Ning Zhang from Rutgers University. Together, the team set out to find a way to heal concrete and found an unusual answer: a fungus called Trichoderm­a reesei. When this fungus is mixed with concrete, it originally lies dormant -- until the first crack appears.

"The fungal spores, together with nutrients, will be placed into the concrete matrix during the mixing process. When cracking occurs, water and oxygen will find their way in. With enough water and oxygen, the dormant fungal spores will germinate, grow and precipitat­e calcium carbonate to heal the cracks," explained Jin.

"When the cracks are completely filled and ultimately no more water or oxygen can enter inside, the fungi will again form spores. As the environmen­tal conditions become favorable in later stages, the spores could be wakened again."

The research is still in the fairly early stages, with the biggest issue being the survivabil­ity of the fungus within the harsh environmen­t of concrete. However, Jin is hopeful that with further adjustment­s the Trichoderm­a reesei will be able to effectivel­y fill the cracks.

"There are still significan­t challenges to bring an efficient selfhealin­g product to the concrete market. In my opinion, further investigat­ion in alternativ­e microorgan­isms such as fungi and yeasts for the applicatio­n of self-healing concrete becomes of great potential importance," said Jin.

Newspapers in English

Newspapers from Zambia