Automobile Technology & Material

ESP智能拧紧系统应­用

孙治国1 陈恪毅2 - 130011) (一汽 大众汽车有限公司,长春

-

1987—),作者简介:陈恪毅( 男,规划工程师,研究生学历,主要从事总装工艺规划­工作。

摘要:在汽车装配流水线上,绝大部分零件都是依靠­人工装配的,在很多工况下,会存在装ESP配效率­低,人机工程情况差,物料占据工位多等问题。以 模块的零件为例,从自动化和人ESP机­协作的角度,设计了一种智能拧紧系­统,高效的完成了 模块的全部工艺,并且极大改善了人机工­程情况。ESP EC关键词: 模块 人机工程 扳手TP242.2 B Doi:10.19710/j.cnki.1003-8817.20180168中图­分类号: 文献标识码: 1 前言

在现行的汽车装配线上,对于车身电子稳定

ESP)系统( 模块零件,普遍采用下述方式进行­装配,即由操作者手持各个零­件,在不同的工位上, 60依序装配,依序拧紧。对于 秒节拍生产线,需使

6 5 1用 名操作者,在个主线工位的前舱位­置和 个线边分装工位来完成。经过工艺调研和结构测­试,开发并使用了一ESP 3种 智能拧紧系统,可以使用 名操作者,在一

ABS个线边工位来完­成全部工艺过程,即完成 泵、泵体支架、支架螺钉、刹车油管、油管管夹、油管间

EC隔块、 拧紧等工艺。其中支架螺钉由人工用­手持式电动拧紧枪拧紧,油管螺母由人工手动带­入,再由机器人带动特殊头­扳手对其终拧紧。下面将从系统结构、系统模块、通讯架构和人机工程分­析四方面来详述。

这样的工艺安排,首先带来的是人员的精­益,在总装车间的项目实施­后,相关操作人员需求减少­54%,了 此外带来拧紧过程的可­靠度提升,且开启了以小型机器人­为载体的拧紧应用方向­的探究。

2 系统总体结构

1在图的系统总结构图­中,可以看到,本系统分为四个工序:

ABS第一工序完成 泵与泵体支架的连接紧­固,扫码确认型号,放到夹具上并锁紧;

第二工序完成三个油管­管夹和两根刹车油管的­预装配; 3

第三工序完成三根刹车­油管和 个油管间隔块的预装配;

EC第四工序是机器人­工序,即机器人夹持 电动扳手对刹车油管螺­母终拧紧,完成后自动放行。

3 系统各模块 3.1 循环线体

2在图 的循环线体结构图中,线体采用立式循

6.2 m*0.45 m*1.45 m;环线方式,循环线外廓尺寸: (线体主体由铝型材构成 具有强度高、重量轻、) ,直线性好等特点,为保证设备稳定性及精­度在第四工序处的循环­线底部,安装有矩形管钢架加强­刚度。 循环载体为齿轮带,循环线尾部装有驱动装­3 SEW置,采用图 所示的 变频减速电机(运行平稳可靠、噪音小、使用寿命长)驱动线体夹具以设定的­速度进行循环。 4循环线体的轨道采用­图 所示的经强化处理1 m, 5的矩形型材,最长分段为 连接处采用图 所示的先进轨道拼接技­术,根据实际需要采用不同­的拼接方法。夹具通过性平稳,轨道接缝处不易磨损,表面镀硬铬处理,与循环线体的铝制本色­配合,在其余件表面镀锌并白­色钝化防腐处理。

3.2 夹具

6 12如图 所示,全线提供 套夹具,夹具主体采用航空铝,表面喷砂氧化处理,其它附件表面进行发黑­处理。为保护装配零件,与零件接触的除重要的­定位部分外均采用聚酯­材料(以防零部件的划伤),夹具对于不同产品的不­同外形零件具有一定的­通用性。

采用快速夹钳对零件夹­紧,为保证夹紧的可靠性,在第四工序额外配备夹­紧安全装置,以确保拧紧过程中夹具­夹紧的绝对可靠。

夹具与循环线之间由齿­形链轮传递动力,并采用摩擦块结构,通过选取合适的弹簧(米思米标准弹簧)提供可靠的夹紧力,使夹具即有足够的驱动­力随输送链可靠运动,又能随时被停止机构可­靠拦截。

P+ F夹具到位识别采用 接近开关,关键工位(如第四工序)采用光电开关或读码器­进一步提高可靠性。

3.3 第一工序分装台

7如图 所示,第一工序操作过程为:操作者扫码并根据条码­信息从料架上取出相A­BS应型号的 泵体并放入定位夹具中­定位,取出ABS泵体支架放­在 泵体上,并靠紧夹具定位面进行­定位;取两个支架螺钉,手动带入支架及泵体,用手

持式电动拧紧扳手进拧­紧。之后将分装的总成放到­线体循环夹具上,定位锁紧,按下开关放行。

分装台右侧放置条码打­印机,用于打印条码,料盒用于放置支架螺钉。使用一个机械折臂附带­EC电动扳手以减轻操­作者的工作负荷,一个扫码

EC枪用于输入产品条­码,分装台下安装有 电动扳手控制器,侧面落地固定一个显示­屏,用于第一工序的拧紧信­息显示;

分装台承力部分使用铝­型材,台面造型为内凹形,适合坐姿工作,扩大人手的控制范围。台面

1 cm材质为硬实木,上方铺 厚的耐磨聚氨酯;分装台所有连接均采用­型材连接件。

3.4 机器人及其非标头部

Altas根据 电动扳手的重量及最大­反力矩,第KUKA四工序选定 公司的小型六轴机器人­KR1610, 16 kg, 1 610 mm,有效负荷 最大臂展 重复±0.04 mm精度 。机器人头部通过自制连­接件可靠夹持电动扳手,机器人较高的重复精度­保证了特殊头电动扳手­在油管螺母轴拧紧中的­重复精度。机器人活动区安装防护­栏,护栏由铝型材框架及透­明的亚克SICK力板­构成,配合 光幕已获得更高的安全­性,并留有维修活门,以便后期维护保养。

3.5 电控柜

319F原件采用威图­标准电柜、西门子 安全型PLC ET200、 从站模块、西门子按钮开关及触摸­屏、SEW变频器等符合大­众电气标准的元器件。

4 通讯结构

8如图 所示,机器人控制器作为主控­装置,控 制线体夹具定位及放行,并控制扳手拧紧、复位,

PLC线体 作为信号协调中转站使­用(多方通讯协

Masterpc XML议不同)。 通过 协议与扳手控制器通信,主要解析任务、拧紧数据的存储。

第一工序用条码枪扫码,上位机通过解析条码获­得车辆信息。并将此信息以通讯的方­式下达

PRG:到一工位的拧紧任务中( 程序号)。设置在第一工序上的材­质检测开关、光电开关等对产品型号­进行区分、防错,并将信息与对应的夹具­进行绑定,通过通信的方式将获取­的产品信息反馈给

PLC线体 并进行暂时存储 ,并与夹具到达拧紧工位­时获得的型号数据(通过光电开关检测外形­差异)进行比对,将比对结果发送给机器­人控制器及扳手控制器,机器人根据型号选择特­定的轨迹进行定位,定位结束后通知扳手进­行复紧,拧紧扳手根据型号信息­选择对应的拧紧程序并­进行复紧,

PLC将拧紧完成合格­及不合格信号返回给线­体 及

PLC机器人控制器,线体 将拧紧点合格、不合格信息与夹具绑定,并在下件工位进行显示。机器人控制器根据拧紧­完成信号进行复位点定­位,定位结束后通知扳手进­行复位动作,扳手复位后通知机器人­复位结束,机器人进行下一拧紧点­位定位或回原位动作。

5 人机工程分析

从人机工程学设计角度­各工位进行分析,结9果如图 所示。

6 下一步的设计方向

下一步的设计思路主要­有三个方面:即更高的自动化、智慧的物流方案、镜像化的控制系统。

机构自动上支架和拧紧,实现与物料供应的自动­化对接。

6.2 智慧的物流方案

AGV(物料的供应过程如下:即 自动引导移动车)拖动物料子母车运行到­接驳结构处,由接驳器将子车拖到预­定位置,同时将空物料子车返还,在ESP接驳结构靠近 智能拧紧系统这一侧配­置一个小型龙门机构,将物料子车中的料盒拾­取至预先定位的位置并­由气缸机构抱紧,机器人在视觉引ABS­导下即可取放 泵体。此外,在接驳结构处会PLC­设置多个位置传感器,与系统 通讯,当物料子PLC车中的­零件数量到达设定的最­低储备时,即由向物流排序区服务­器发送要货指令,服务器则分AGV派 小车开始下一轮的送件­任务。

6.3 镜像化的控制系统

11 PLC如图 所示,体现的是 远程控制软件同步PL­C各可控部件状态,实现逆向反馈,正向控制。

12 TIMS如图 所示, 拧紧系统远程控制软件,

EC可以实时同步电动­扳手的状态及参数,实现实时的修正和动作­控制。

以上两者均集成在故障­分析处理系统中,通过内置的故障清单,通过判断故障特征来确­认故障,并将故障处理方式和最­佳步骤,反馈给服务器和维修工。

7 结束语

4.0随着工业大战略的持­续延伸推进,汽车行业必将深受影响,汽车总装领域是自动化­和镜像信息化的蓝海领­域,围绕总装工艺设计的核­心技术,以工业机器人和协作式­机器人为执行体,以镜像双胞胎为控制架­构,以物联协议和高速网络­传输为连接,最终打造一个高度自动­化,高度信息化的无声无光­工厂将成为可能。

 ??  ?? 图1 系统总结构图
图1 系统总结构图
 ??  ?? 图6 夹具侧视图
图6 夹具侧视图
 ??  ?? 图2 循环线体结构图
图2 循环线体结构图
 ??  ?? 图4 线体轨道
图4 线体轨道
 ??  ?? 图3 SEW电机
图3 SEW电机
 ??  ?? 图5 轨道拼接
图5 轨道拼接
 ??  ?? 图8 通讯结构图
图8 通讯结构图
 ??  ?? 图7 第一工序图解
图7 第一工序图解
 ??  ??
 ??  ?? 图12 TIMS拧紧远程控制­界面
图12 TIMS拧紧远程控制­界面
 ??  ?? 图11 PLC远程控制系统界­面
图11 PLC远程控制系统界­面

Newspapers in Chinese (Simplified)

Newspapers from China