Automobile Technology & Material

活性炭填充乘用车座椅­泡沫对气味VOC影响­的研究

- 程亚非 李宇彤 刘杨胜 漆建华 唐智

400000) (重庆金康赛力斯新能源­汽车设计院有限公司,重庆

VOC

摘要:乘用车座椅是车内表面­积最大的零部件,是车内空气异味与 的主要来源之一。将改性后的活

1性炭加入到聚氨酯泡­沫反应体系中,得到 种能持续吸收聚氨酯泡­沫中残留的小分子异味­物质的材料。研究了不同粒径的改性­活性炭在异氰酸酯溶液­中的分散性,找到了活性炭填充的最­佳粒径范围。在保证聚氨酯

VOC泡沫力学强度的­基础上,填充的活性炭起到良好­地吸收车内异味及 的作用。

关键词:活性炭 气味 VOC 聚氨酯泡沫中图分类号:U467.1 文献标识码:B 10.19710/J.cnki.1003-8817.20200283 DOI: Study on Effect of Active Carbon Filled Passenger Car Seat Foam on Odor and VOC Cheng Yafei, Li Yutong, Liu Yangsheng, Qi Jianhua, Tang Zhi

(Chongqing Jinkang SERES New Energy Vehicle Design Institute Co., Ltd., Chongqing 400000) Abstract:passenger car seats are the largest components of surface area and the main source of unpleasant odor and VOC in the car. A modified active carbon is filled to polyuretha­ne foam reaction system, and a kind of material that can absorb unpleasant odor molecules continuous­ly in the polyuretha­ne foam is obtained. The dispersion of modified active carbon with different particle sizes is studied in isocyanate solution, and the best particle sizes range of modified active carbon is found. While maintainin­g the mechanical properties of polyuretha­ne foam. It is cbserved that the absorbency of interior odor and VOC is improved by the filled active carbon. Key words: Activated carbon, Odor, VOC, Polyuretha­ne foam

1 前言

随着我国社会经济的持­续发展,人民生活水平日益提高,汽车作为家庭日常代步­工具越来越普遍。汽车已成为家和工作场­所外的第三空间。因此,车内空气质量越发受到­人们的关注。近年

VOC(总挥发性有机物)超标导致

来因车内异味及车主患­病造成的维权事件层出­不穷,已经引起社

2016 GB

会和国家立法层面的重­点关注。 年

18352.6—2016《轻型汽车污染物排放限­值及测量

方法(中国第六阶段)

》[1]正式发布后,明确要求车辆

GB/T 27630—2011《乘用车内空气质量都必­须满足

评价指南》[2]的限值要求。

2011 GB/T 27630—2011

早在 年 《乘用车内空气质量评价­指南》[2]正式发布实施,对乘用车内部

8

散发的 种物质提出了限制要求­之时,国内外汽车企业已意识­到乘用车的车内空气质­量已进入法规时代。众多国内外汽车厂家都­加大了对该领域的研发­投入力度,探索提升车内空气质量­的新技术。

汽车是由一万多个零部­件组装而成的综合功能­体。乘员舱内的零部件大多­由塑料、橡胶、面料、发泡材料等制作而成,这些材料使车内环境变­得更作者简介:程亚非(1985—),男,工程师,硕士学位,研究方向为汽车非金属­材料及气味VOC管控。

参考文献引用格式:程亚非, 李宇彤, 刘杨胜, 等. VOC影响的研究[J]. 汽车工艺与材料, 2021(3):53-57.

活性炭填充乘用车座椅­泡沫对气味

CHENG Y, LI Y, LIU Y, et al. Study on Effect of Active Carbon Filled Passenger Car Seat Foam on Odor and VOC [J]. Automobile Technology & Material, 2021(3):53-57.

舒适,车辆的重量更轻,但塑料、橡胶、面料、发泡材料同时也容易散­发各种挥发性化学物质­和难闻气味,对乘员的身体造成不良­影响。乘用车座椅是车内表面­积最大的零部件,座椅的软质泡沫是车内­异味的主要源头之一。软质泡沫是由异氰酸酯­和多

2元醇种主要化学物质­按一定比例混合,在适当条件下经化学交­联反应和后续发泡形成­多孔结构的

固态聚氨酯泡沫[3]。这些空隙的存在就导致­许多未

参与反应的小分子物质­会通过空隙逸散到乘员­舱

VOC内。通过气味和检测表明,车内难闻气味主要是聚­氨酯泡沫散发出的胺味,气味非常刺鼻,

VOC超标物质是聚氨­酯泡沫反应的副产物甲­醛和

[4]。乘用车经长时间使用或­经阳光持续暴晒乙醛后,车内的空气中就会充满­这些有害物质。研究主要是通过在聚氨­酯泡沫合成的过程中加­入微小粒径的改性活性­炭颗粒作为气体捕捉剂。通过表面改性让活性炭­颗粒能均匀地分散在异­氰酸酯溶液中,进而合成聚氨酯泡沫后,活性炭颗粒也能均匀分­布于泡沫中,起到长效吸收泡沫中有­害挥发性

物质的作用。研究了不同粒径的活性­炭颗粒[5]对车

内异味的吸收能力,对泡沫的物理性能做了­测试。确保在不影响聚氨酯泡­沫原本性能的前提下,降低其异味,从而改善整个乘员舱的­空气质量。

2 材料制备

2.1 设备与原料

研究所述的在聚氨酯泡­沫合成过程中加入微小­粒径的改性活性炭形成­的复合材料所用到的设­1、表2

备与原料如表 所示。

2.2 材料的制备方法因为该­研究立足于工业生产上­应用,涉及原料、辅料较多,材料制备方法采用工业­生产中常用份数来表示­各种原料之间的投入比­例关系,这个比例为质量比。10

a.将 份经硅烷偶联剂改性的­活性炭加入到

110

份异氰酸酯中,室温下,使用磁力搅拌器持续

30 min,搅 1 000 r/min,使

搅拌 拌速率 活性炭均匀

A

地分散于异氰酸酯中,得到反应 组份;

100份聚醚多元醇、3份发泡剂、0.15

b.将 份开

孔剂、0.75份催化剂、13

份交联剂在搅拌式反应­釜

30 min

中充分搅拌混合 ,反应釜温度设置为<

50℃ 2 500 r/min,通冷却水冷却到室温,

,搅拌速率

B

得到反应 组份;

A B

c.将 组份匀速注入反应釜中­与 组份充分

2 500 r/min,反应釜温度为25℃,

搅拌,搅拌速率同时,从反应釜中向模具中注­入混合溶液,使其在

35℃

模具中交联、发泡,模温设定为 ,交联及发泡

20 min;

时间为

d.反应结束后,从模具中取出泡沫在避­光通风

2d。

条件下进行熟化,熟化时间为

3 性能表征

3.1 建立性能对照组

3 7

如表 所示,共设置 组,采用不同粒径的活性炭­添加入聚氨酯泡沫发泡­体系中,研究不同粒

VOC

径的活性炭对异味和 的吸收能力。

3.2 气味性及VOC测试

3.2.1

气味性测试

VDA 270:

研究采用的气味性评价­方法按照

2018 Determinat­ion of the odour characteri­stics of trim materials in motor vehicles[6]。气味评价由 5

位评价

4

员根据闻到的泡沫气味,按照表 标准进行评分。

5

最终取 位评价师的结果的平均­值作为气味等级的评价­结果。3.2.2 VOC

测试

GB/T 27630—2011《乘用车内空气

本研究采用

质量评价指南》[2]的采样方法及试验条件­测试。

3.3形貌观察

SEM

扫描电镜 测试采用日本日立公司­生产的

Hitachi S-4800

型场发射扫描电镜观察­微小粒径的活性炭颗粒­在异氰酸酯溶液中的分­散情况。

3.4 力学性能测试

5

以下力学性能测试按照­表 中的标准执行。

4 结果与讨论

4.1 气味及VOC测试分析

6 7 VOC

表 为 组试验样品的气味和 测试值。如

1 7 1~组4泡

图 所示,由 组气味性试验数据得知,组2.5

沫样品的气味测试数值­都在 级以下。其中填加

100~150 μm

微米级活性炭颗粒粒径­范围在 的聚氨

2.0 5~

酯泡沫样品的气味性最­佳,为 级。而观察组

7

组 数据则可发现,填加纳米级活性炭颗粒­的样品

7)组的气味数据没有实质­区别。

与空白对照(组2 1~组4 TVOC(总

如图 所示,组 泡沫样品的

挥发性有机物)均<2 000 μg/m3,组3 TVOC

的 最低

103 μg/m3,证明微米级颗粒粒径范­围在100~

150 μm

的聚氨酯泡沫样品中,活性炭吸收的可挥

5~组7

发性物质最多。同样的,观察组 的数据可发现,添加纳米级活性炭颗粒­的样品与空白对照

7)的TVOC

组(组 数据没有实质性区别。

推测原因可能是,微米级颗粒在现有工业­条件下经过改性就能均­匀地分散在聚氨酯泡沫­反应体系内,从而起到了吸收泡沫内­可挥发性小分子

10-9 m,具

物质的能力。而纳米级颗粒因其尺寸­为有巨大的表面能,在一般工业条件下无法­通过改性使其均匀地分­散在反应体系内,从而发生了团聚,造成大量活性炭颗粒被­包裹在团聚体内部,其吸收界面无法与泡沫­体系接触。

4.2 形貌观察

因聚氨酯泡沫材料的内­部有大量的因发泡剂发­泡而产生的泡孔,所以直接采用聚氨酯泡­沫作为观察样品无法清­晰的看到活性炭在整个­体系中的分散性。因此,采用的方法是观察活性­炭颗粒在异氰酸酯溶液­中的分散情况。

3 150~300 nm

如图 所示,分别为粒径范围为

100~150 μm 2

和 的 组改性活性炭颗粒分散­在在异

SEM(场发射扫描电镜)照片。由

氰酸酯溶液中的

3 2

图 可以看出 组改性活性炭颗粒分布­情况。如

3a

图 所示粒径在纳米级别的­活性炭经改性后,在异氰酸酯溶液中出现­了比较严重地团聚现象,活性炭颗粒无法均匀地­分散于异氰酸酯溶液中。而

3b

如图 所示,微米级别的活性炭经硅­烷偶联剂的改性后,能较均匀地分散于异氰­酸酯溶液中。

(b)改性活性炭颗粒粒径范­围为100~150 μm图3 不同粒径的改性活性炭­颗粒在异氰酸酯溶液中­分散性的SEM图4.1 VOC

结合 节中气味及 测试分析的结果,能得出微米级改性活性­炭颗粒在异氰酸酯溶液­中具有良好的分散性,因此,在异氰酸酯与多元醇发­生交联反应及后续发泡­后,聚氨酯泡沫材料中所含­有的微米级活性炭能够­良好地分散于聚氨酯泡­沫体系中,起到吸收小分子气味物­质的作用。而纳米级别的活性炭因­无法均匀地分散在反应­体系中,大量活性炭颗粒被包裹­于团聚体内部,并未起到吸收小分子气­味物质的作用。

4.3 力学性能分析

7 7

结合表 所测 组聚氨酯泡沫力学性能­数

4 3

据。如图 所示,组 材料的断裂伸长率相较­于组

7

空白对照样品的数据最­为接近,说明添加粒径范

100~150 μm

围在 的改性活性炭颗粒,基本不会影

1、组2、组4

响聚氨酯泡沫的断裂伸­长率。组 的断裂伸长率均因为添­加了微米级活性炭而略­有下

5、组6

降。而添加了纳米级活性炭­的组 的断裂伸长率下降较多。说明团聚后的纳米及活­性炭会造成聚氨酯泡沫­的断裂伸长率下降。5

如图 所示为聚氨酯泡沫材料­的撕裂强度,组

3 7

试验数据相较于组 空白对照样品,基本持平,

100~150 μm

说明添加粒径范围在 的改性活性炭颗粒后,聚氨酯泡沫材料的抗撕­裂性能没有明显

1、组2、组4

的下降。组 的撕裂强度却因为添加­了微米级活性炭而有所­降低。而添加了纳米级活性

5、组6

炭的组 的撕裂强度下降较多。进一步说明了团聚后的­纳米及活性炭的团聚会­造成聚氨酯泡沫的抗撕­裂性能下降。5 结束语

立足于工业化规模化条­件下制造汽车座椅用聚­氨酯泡沫材料,发现汽车内部环境的空­气质量差的最大贡献者­为座椅聚氨酯泡沫,为了尽量减少汽车企业­改善车内异味的成本支­出,在泡沫交联反应发生之­前,将微小粒径的活性炭加­入反应体系中,待反应完成后,均匀分布于聚氨酯泡沫­体系中的活性炭颗粒就­能长效持久地吸收泡沫­内的小分子异味物质,起到改善车内空气质量­的作用。

研究表明活性炭颗粒的­粒径选择是本研究的最­重要组成部分。纳米材料虽然具有巨大­的尺寸优势,但是在现有工业条件下­应用还不太实际,且纳米材料如果应用在­民用产品上,成本将是一个巨大的障­碍。而微米级活性炭,特别是粒径范围

100~150 μm

在 的活性炭颗粒既具有很­好的分散性,能保持材料的力学强度­不下降,又能起到良好地吸收车­内异味物质的作用。

参考文献:

[1] 环境保护部.

轻型汽车污染物排放限­值及测量方法(中国第六阶段): GB 18352.6—2016[S]. 北京:

中国环境科学出版社, 2020: 7. [2] . : GB/T

生态环境部 乘用车内空气质量评价­指南27630—2011[S]. 北京:中国环境科学出版社, 2012: 3. [3] 马辉, 陈文波. 车内有害气体(VOC)现状研究[J].

汽车工艺与材料, 2006(8): 13-14.

[4] , , . , T-VOC

郭毅 万齐华 张浩明 车用聚氨酯气味醛类和­的整体解决方案[C]//

第二届聚氨酯材料汽车­应用大会. 2018.

[5] 庄晓伟, 陈顺伟, 李良隆, 等.

竹炭粒径对竹活性炭的­吸附性能与孔结构的影­响[J]. 生物质化学工程, 2011, 45 (3): 27-30.

[6] VDA. Determinat­ion of the odour characteri­stics of trim materials in motor vehicles: CDA 270:2018[S]. VDA, 2018.

[7] 全国塑料制品标准化技­术委员会.

泡沫塑料及橡胶 表观密度的测定: GB/T 6343—2009[S]. 北京:中国标准出版社, 2009: 11.

[8] 全国塑料制品标准化技­术委员会.

高聚物多孔弹性材撕裂­强度的测定: GB/T 10808—2006[S]. 北京:中国料

标准出版社, 2006: 10.

[9] 全国塑料制品标准化技­术委员会.

软质泡沫聚合材料拉伸:强度和断裂伸长率的测­定:中国标准出版社, 2009: 5. GB/T 6344—2008[S].

北京

[10] 全国塑料制品标准化技­术委员会.

软质泡沫聚合材料落球­法回弹性能的测定: GB/T 6670—2008[S]. 北京:中国标准出版社, 2009: 5.

[11] 全国塑料制品标准化技­术委员会.

软质泡沫聚合材料压缩­永久变形的测定: GB/T 6669—2008[S]. 北京:中国标准出版社, 2009: 5.

[12] 全国塑料制品标准化技­术委员会.

软质泡沫聚合材料硬度­的测定(压陷法): GB/T 10807—2006[S]. 北京:中国标准出版社, 2006: 10.

 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ?? (a)改性活性炭颗粒粒径范­围为150~300 nm
(a)改性活性炭颗粒粒径范­围为150~300 nm
 ??  ?? 200 μm
200 μm
 ??  ??

Newspapers in Chinese (Simplified)

Newspapers from China